This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arcsine of 1 is _pi / 2 . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asin1 | |- ( arcsin ` 1 ) = ( _pi / 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | asinval | |- ( 1 e. CC -> ( arcsin ` 1 ) = ( -u _i x. ( log ` ( ( _i x. 1 ) + ( sqrt ` ( 1 - ( 1 ^ 2 ) ) ) ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( arcsin ` 1 ) = ( -u _i x. ( log ` ( ( _i x. 1 ) + ( sqrt ` ( 1 - ( 1 ^ 2 ) ) ) ) ) ) |
| 4 | ax-icn | |- _i e. CC |
|
| 5 | 4 | addridi | |- ( _i + 0 ) = _i |
| 6 | 4 | mulridi | |- ( _i x. 1 ) = _i |
| 7 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 8 | 7 | oveq2i | |- ( 1 - ( 1 ^ 2 ) ) = ( 1 - 1 ) |
| 9 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 10 | 8 9 | eqtri | |- ( 1 - ( 1 ^ 2 ) ) = 0 |
| 11 | 10 | fveq2i | |- ( sqrt ` ( 1 - ( 1 ^ 2 ) ) ) = ( sqrt ` 0 ) |
| 12 | sqrt0 | |- ( sqrt ` 0 ) = 0 |
|
| 13 | 11 12 | eqtri | |- ( sqrt ` ( 1 - ( 1 ^ 2 ) ) ) = 0 |
| 14 | 6 13 | oveq12i | |- ( ( _i x. 1 ) + ( sqrt ` ( 1 - ( 1 ^ 2 ) ) ) ) = ( _i + 0 ) |
| 15 | efhalfpi | |- ( exp ` ( _i x. ( _pi / 2 ) ) ) = _i |
|
| 16 | 5 14 15 | 3eqtr4i | |- ( ( _i x. 1 ) + ( sqrt ` ( 1 - ( 1 ^ 2 ) ) ) ) = ( exp ` ( _i x. ( _pi / 2 ) ) ) |
| 17 | 16 | fveq2i | |- ( log ` ( ( _i x. 1 ) + ( sqrt ` ( 1 - ( 1 ^ 2 ) ) ) ) ) = ( log ` ( exp ` ( _i x. ( _pi / 2 ) ) ) ) |
| 18 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 19 | 18 | recni | |- ( _pi / 2 ) e. CC |
| 20 | 4 19 | mulcli | |- ( _i x. ( _pi / 2 ) ) e. CC |
| 21 | pipos | |- 0 < _pi |
|
| 22 | pire | |- _pi e. RR |
|
| 23 | lt0neg2 | |- ( _pi e. RR -> ( 0 < _pi <-> -u _pi < 0 ) ) |
|
| 24 | 22 23 | ax-mp | |- ( 0 < _pi <-> -u _pi < 0 ) |
| 25 | 21 24 | mpbi | |- -u _pi < 0 |
| 26 | pirp | |- _pi e. RR+ |
|
| 27 | rphalfcl | |- ( _pi e. RR+ -> ( _pi / 2 ) e. RR+ ) |
|
| 28 | 26 27 | ax-mp | |- ( _pi / 2 ) e. RR+ |
| 29 | rpgt0 | |- ( ( _pi / 2 ) e. RR+ -> 0 < ( _pi / 2 ) ) |
|
| 30 | 28 29 | ax-mp | |- 0 < ( _pi / 2 ) |
| 31 | 22 | renegcli | |- -u _pi e. RR |
| 32 | 0re | |- 0 e. RR |
|
| 33 | 31 32 18 | lttri | |- ( ( -u _pi < 0 /\ 0 < ( _pi / 2 ) ) -> -u _pi < ( _pi / 2 ) ) |
| 34 | 25 30 33 | mp2an | |- -u _pi < ( _pi / 2 ) |
| 35 | 20 | addlidi | |- ( 0 + ( _i x. ( _pi / 2 ) ) ) = ( _i x. ( _pi / 2 ) ) |
| 36 | 35 | fveq2i | |- ( Im ` ( 0 + ( _i x. ( _pi / 2 ) ) ) ) = ( Im ` ( _i x. ( _pi / 2 ) ) ) |
| 37 | 32 18 | crimi | |- ( Im ` ( 0 + ( _i x. ( _pi / 2 ) ) ) ) = ( _pi / 2 ) |
| 38 | 36 37 | eqtr3i | |- ( Im ` ( _i x. ( _pi / 2 ) ) ) = ( _pi / 2 ) |
| 39 | 34 38 | breqtrri | |- -u _pi < ( Im ` ( _i x. ( _pi / 2 ) ) ) |
| 40 | rphalflt | |- ( _pi e. RR+ -> ( _pi / 2 ) < _pi ) |
|
| 41 | 26 40 | ax-mp | |- ( _pi / 2 ) < _pi |
| 42 | 18 22 41 | ltleii | |- ( _pi / 2 ) <_ _pi |
| 43 | 38 42 | eqbrtri | |- ( Im ` ( _i x. ( _pi / 2 ) ) ) <_ _pi |
| 44 | ellogrn | |- ( ( _i x. ( _pi / 2 ) ) e. ran log <-> ( ( _i x. ( _pi / 2 ) ) e. CC /\ -u _pi < ( Im ` ( _i x. ( _pi / 2 ) ) ) /\ ( Im ` ( _i x. ( _pi / 2 ) ) ) <_ _pi ) ) |
|
| 45 | 20 39 43 44 | mpbir3an | |- ( _i x. ( _pi / 2 ) ) e. ran log |
| 46 | logef | |- ( ( _i x. ( _pi / 2 ) ) e. ran log -> ( log ` ( exp ` ( _i x. ( _pi / 2 ) ) ) ) = ( _i x. ( _pi / 2 ) ) ) |
|
| 47 | 45 46 | ax-mp | |- ( log ` ( exp ` ( _i x. ( _pi / 2 ) ) ) ) = ( _i x. ( _pi / 2 ) ) |
| 48 | 17 47 | eqtri | |- ( log ` ( ( _i x. 1 ) + ( sqrt ` ( 1 - ( 1 ^ 2 ) ) ) ) ) = ( _i x. ( _pi / 2 ) ) |
| 49 | 48 | oveq2i | |- ( -u _i x. ( log ` ( ( _i x. 1 ) + ( sqrt ` ( 1 - ( 1 ^ 2 ) ) ) ) ) ) = ( -u _i x. ( _i x. ( _pi / 2 ) ) ) |
| 50 | 4 4 | mulneg1i | |- ( -u _i x. _i ) = -u ( _i x. _i ) |
| 51 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 52 | 51 | negeqi | |- -u ( _i x. _i ) = -u -u 1 |
| 53 | negneg1e1 | |- -u -u 1 = 1 |
|
| 54 | 50 52 53 | 3eqtri | |- ( -u _i x. _i ) = 1 |
| 55 | 54 | oveq1i | |- ( ( -u _i x. _i ) x. ( _pi / 2 ) ) = ( 1 x. ( _pi / 2 ) ) |
| 56 | negicn | |- -u _i e. CC |
|
| 57 | 56 4 19 | mulassi | |- ( ( -u _i x. _i ) x. ( _pi / 2 ) ) = ( -u _i x. ( _i x. ( _pi / 2 ) ) ) |
| 58 | 55 57 | eqtr3i | |- ( 1 x. ( _pi / 2 ) ) = ( -u _i x. ( _i x. ( _pi / 2 ) ) ) |
| 59 | 19 | mullidi | |- ( 1 x. ( _pi / 2 ) ) = ( _pi / 2 ) |
| 60 | 58 59 | eqtr3i | |- ( -u _i x. ( _i x. ( _pi / 2 ) ) ) = ( _pi / 2 ) |
| 61 | 3 49 60 | 3eqtri | |- ( arcsin ` 1 ) = ( _pi / 2 ) |