This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The countdown function C remains 0 after N steps. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | algcvga.1 | ⊢ 𝐹 : 𝑆 ⟶ 𝑆 | |
| algcvga.2 | ⊢ 𝑅 = seq 0 ( ( 𝐹 ∘ 1st ) , ( ℕ0 × { 𝐴 } ) ) | ||
| algcvga.3 | ⊢ 𝐶 : 𝑆 ⟶ ℕ0 | ||
| algcvga.4 | ⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) < ( 𝐶 ‘ 𝑧 ) ) ) | ||
| algcvga.5 | ⊢ 𝑁 = ( 𝐶 ‘ 𝐴 ) | ||
| Assertion | algcvga | ⊢ ( 𝐴 ∈ 𝑆 → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algcvga.1 | ⊢ 𝐹 : 𝑆 ⟶ 𝑆 | |
| 2 | algcvga.2 | ⊢ 𝑅 = seq 0 ( ( 𝐹 ∘ 1st ) , ( ℕ0 × { 𝐴 } ) ) | |
| 3 | algcvga.3 | ⊢ 𝐶 : 𝑆 ⟶ ℕ0 | |
| 4 | algcvga.4 | ⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) < ( 𝐶 ‘ 𝑧 ) ) ) | |
| 5 | algcvga.5 | ⊢ 𝑁 = ( 𝐶 ‘ 𝐴 ) | |
| 6 | 3 | ffvelcdmi | ⊢ ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ 𝐴 ) ∈ ℕ0 ) |
| 7 | 5 6 | eqeltrid | ⊢ ( 𝐴 ∈ 𝑆 → 𝑁 ∈ ℕ0 ) |
| 8 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 9 | eluz1 | ⊢ ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ 𝑁 ≤ 𝐾 ) ) ) | |
| 10 | 2fveq3 | ⊢ ( 𝑚 = 𝑁 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = ( 𝐶 ‘ ( 𝑅 ‘ 𝑁 ) ) ) | |
| 11 | 10 | eqeq1d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ↔ ( 𝐶 ‘ ( 𝑅 ‘ 𝑁 ) ) = 0 ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑁 ) ) = 0 ) ) ) |
| 13 | 2fveq3 | ⊢ ( 𝑚 = 𝑘 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ↔ ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 ) ) ) |
| 16 | 2fveq3 | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = ( 𝐶 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 17 | 16 | eqeq1d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ↔ ( 𝐶 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = 0 ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = 0 ) ) ) |
| 19 | 2fveq3 | ⊢ ( 𝑚 = 𝐾 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) ) | |
| 20 | 19 | eqeq1d | ⊢ ( 𝑚 = 𝐾 → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ↔ ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑚 = 𝐾 → ( ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) ) |
| 22 | 1 2 3 4 5 | algcvg | ⊢ ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑁 ) ) = 0 ) |
| 23 | 22 | a1i | ⊢ ( 𝑁 ∈ ℤ → ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑁 ) ) = 0 ) ) |
| 24 | nn0ge0 | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) | |
| 25 | 24 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → 0 ≤ 𝑁 ) |
| 26 | 0re | ⊢ 0 ∈ ℝ | |
| 27 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 28 | zre | ⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℝ ) | |
| 29 | letr | ⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 0 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘 ) → 0 ≤ 𝑘 ) ) | |
| 30 | 26 27 28 29 | mp3an3an | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( ( 0 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘 ) → 0 ≤ 𝑘 ) ) |
| 31 | 25 30 | mpand | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 𝑁 ≤ 𝑘 → 0 ≤ 𝑘 ) ) |
| 32 | elnn0z | ⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ) ) | |
| 33 | 32 | simplbi2 | ⊢ ( 𝑘 ∈ ℤ → ( 0 ≤ 𝑘 → 𝑘 ∈ ℕ0 ) ) |
| 34 | 33 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 0 ≤ 𝑘 → 𝑘 ∈ ℕ0 ) ) |
| 35 | 31 34 | syld | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 𝑁 ≤ 𝑘 → 𝑘 ∈ ℕ0 ) ) |
| 36 | 7 35 | sylan | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℤ ) → ( 𝑁 ≤ 𝑘 → 𝑘 ∈ ℕ0 ) ) |
| 37 | 36 | impr | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) ) → 𝑘 ∈ ℕ0 ) |
| 38 | 37 | expcom | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) → ( 𝐴 ∈ 𝑆 → 𝑘 ∈ ℕ0 ) ) |
| 39 | 38 | 3adant1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) → ( 𝐴 ∈ 𝑆 → 𝑘 ∈ ℕ0 ) ) |
| 40 | 39 | ancld | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) → ( 𝐴 ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) ) ) |
| 41 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 42 | 0zd | ⊢ ( 𝐴 ∈ 𝑆 → 0 ∈ ℤ ) | |
| 43 | id | ⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆 ) | |
| 44 | 1 | a1i | ⊢ ( 𝐴 ∈ 𝑆 → 𝐹 : 𝑆 ⟶ 𝑆 ) |
| 45 | 41 2 42 43 44 | algrf | ⊢ ( 𝐴 ∈ 𝑆 → 𝑅 : ℕ0 ⟶ 𝑆 ) |
| 46 | 45 | ffvelcdmda | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 ) |
| 47 | 2fveq3 | ⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) = ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) | |
| 48 | 47 | neeq1d | ⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) ≠ 0 ↔ ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ≠ 0 ) ) |
| 49 | fveq2 | ⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( 𝐶 ‘ 𝑧 ) = ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) | |
| 50 | 47 49 | breq12d | ⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) < ( 𝐶 ‘ 𝑧 ) ↔ ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 51 | 48 50 | imbi12d | ⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( ( ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) < ( 𝐶 ‘ 𝑧 ) ) ↔ ( ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) ) |
| 52 | 51 4 | vtoclga | ⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 → ( ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 53 | 1 3 | algcvgb | ⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 → ( ( ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ↔ ( ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ∧ ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = 0 ) ) ) ) |
| 54 | simpr | ⊢ ( ( ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ∧ ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = 0 ) ) → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = 0 ) ) | |
| 55 | 53 54 | biimtrdi | ⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 → ( ( ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = 0 ) ) ) |
| 56 | 52 55 | mpd | ⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = 0 ) ) |
| 57 | 46 56 | syl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = 0 ) ) |
| 58 | 41 2 42 43 44 | algrp1 | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 59 | 58 | fveqeq2d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = 0 ↔ ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = 0 ) ) |
| 60 | 57 59 | sylibrd | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = 0 ) ) |
| 61 | 40 60 | syl6 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) → ( 𝐴 ∈ 𝑆 → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = 0 ) ) ) |
| 62 | 61 | a2d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) → ( ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 ) → ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = 0 ) ) ) |
| 63 | 12 15 18 21 23 62 | uzind | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ≤ 𝐾 ) → ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) |
| 64 | 63 | 3expib | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝐾 ∈ ℤ ∧ 𝑁 ≤ 𝐾 ) → ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) ) |
| 65 | 9 64 | sylbid | ⊢ ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) ) |
| 66 | 8 65 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) ) |
| 67 | 66 | com3r | ⊢ ( 𝐴 ∈ 𝑆 → ( 𝑁 ∈ ℕ0 → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) ) |
| 68 | 7 67 | mpd | ⊢ ( 𝐴 ∈ 𝑆 → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) |