This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F reaches a fixed point when the countdown function C reaches 0 , F remains fixed after N steps. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | algcvga.1 | ⊢ 𝐹 : 𝑆 ⟶ 𝑆 | |
| algcvga.2 | ⊢ 𝑅 = seq 0 ( ( 𝐹 ∘ 1st ) , ( ℕ0 × { 𝐴 } ) ) | ||
| algcvga.3 | ⊢ 𝐶 : 𝑆 ⟶ ℕ0 | ||
| algcvga.4 | ⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) < ( 𝐶 ‘ 𝑧 ) ) ) | ||
| algcvga.5 | ⊢ 𝑁 = ( 𝐶 ‘ 𝐴 ) | ||
| algfx.6 | ⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝐶 ‘ 𝑧 ) = 0 → ( 𝐹 ‘ 𝑧 ) = 𝑧 ) ) | ||
| Assertion | algfx | ⊢ ( 𝐴 ∈ 𝑆 → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algcvga.1 | ⊢ 𝐹 : 𝑆 ⟶ 𝑆 | |
| 2 | algcvga.2 | ⊢ 𝑅 = seq 0 ( ( 𝐹 ∘ 1st ) , ( ℕ0 × { 𝐴 } ) ) | |
| 3 | algcvga.3 | ⊢ 𝐶 : 𝑆 ⟶ ℕ0 | |
| 4 | algcvga.4 | ⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) < ( 𝐶 ‘ 𝑧 ) ) ) | |
| 5 | algcvga.5 | ⊢ 𝑁 = ( 𝐶 ‘ 𝐴 ) | |
| 6 | algfx.6 | ⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝐶 ‘ 𝑧 ) = 0 → ( 𝐹 ‘ 𝑧 ) = 𝑧 ) ) | |
| 7 | 3 | ffvelcdmi | ⊢ ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ 𝐴 ) ∈ ℕ0 ) |
| 8 | 5 7 | eqeltrid | ⊢ ( 𝐴 ∈ 𝑆 → 𝑁 ∈ ℕ0 ) |
| 9 | 8 | nn0zd | ⊢ ( 𝐴 ∈ 𝑆 → 𝑁 ∈ ℤ ) |
| 10 | uzval | ⊢ ( 𝑁 ∈ ℤ → ( ℤ≥ ‘ 𝑁 ) = { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) | |
| 11 | 10 | eleq2d | ⊢ ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝐾 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) ) |
| 12 | 11 | pm5.32i | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) ↔ ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) ) |
| 13 | fveqeq2 | ⊢ ( 𝑚 = 𝑁 → ( ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ↔ ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝑁 ) ) ) | |
| 14 | 13 | imbi2d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
| 15 | fveqeq2 | ⊢ ( 𝑚 = 𝑘 → ( ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ↔ ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) ) ) | |
| 16 | 15 | imbi2d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
| 17 | fveqeq2 | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ↔ ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ) ) | |
| 18 | 17 | imbi2d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
| 19 | fveqeq2 | ⊢ ( 𝑚 = 𝐾 → ( ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ↔ ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) | |
| 20 | 19 | imbi2d | ⊢ ( 𝑚 = 𝐾 → ( ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
| 21 | eqidd | ⊢ ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝑁 ) ) | |
| 22 | 21 | a1i | ⊢ ( 𝑁 ∈ ℤ → ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝑁 ) ) ) |
| 23 | 10 | eleq2d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑘 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) ) |
| 24 | 23 | pm5.32i | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) ) |
| 25 | eluznn0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ℕ0 ) | |
| 26 | 8 25 | sylan | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 27 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 28 | 0zd | ⊢ ( 𝐴 ∈ 𝑆 → 0 ∈ ℤ ) | |
| 29 | id | ⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆 ) | |
| 30 | 1 | a1i | ⊢ ( 𝐴 ∈ 𝑆 → 𝐹 : 𝑆 ⟶ 𝑆 ) |
| 31 | 27 2 28 29 30 | algrp1 | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 32 | 26 31 | syldan | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 33 | 27 2 28 29 30 | algrf | ⊢ ( 𝐴 ∈ 𝑆 → 𝑅 : ℕ0 ⟶ 𝑆 ) |
| 34 | 33 | ffvelcdmda | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 ) |
| 35 | 26 34 | syldan | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 ) |
| 36 | 1 2 3 4 5 | algcvga | ⊢ ( 𝐴 ∈ 𝑆 → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 ) ) |
| 37 | 36 | imp | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 ) |
| 38 | fveqeq2 | ⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( ( 𝐶 ‘ 𝑧 ) = 0 ↔ ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 ) ) | |
| 39 | fveq2 | ⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) | |
| 40 | id | ⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → 𝑧 = ( 𝑅 ‘ 𝑘 ) ) | |
| 41 | 39 40 | eqeq12d | ⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ↔ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝑅 ‘ 𝑘 ) ) ) |
| 42 | 38 41 | imbi12d | ⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( ( ( 𝐶 ‘ 𝑧 ) = 0 → ( 𝐹 ‘ 𝑧 ) = 𝑧 ) ↔ ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 43 | 42 6 | vtoclga | ⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝑅 ‘ 𝑘 ) ) ) |
| 44 | 35 37 43 | sylc | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝑅 ‘ 𝑘 ) ) |
| 45 | 32 44 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑘 ) ) |
| 46 | 45 | eqeq1d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ↔ ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) ) ) |
| 47 | 46 | biimprd | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ) ) |
| 48 | 47 | expcom | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐴 ∈ 𝑆 → ( ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
| 49 | 48 | adantl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐴 ∈ 𝑆 → ( ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
| 50 | 24 49 | sylbir | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) → ( 𝐴 ∈ 𝑆 → ( ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
| 51 | 50 | a2d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) → ( ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) ) → ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
| 52 | 14 16 18 20 22 51 | uzind3 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) → ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) |
| 53 | 12 52 | sylbi | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) |
| 54 | 53 | ex | ⊢ ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
| 55 | 54 | com3r | ⊢ ( 𝐴 ∈ 𝑆 → ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
| 56 | 9 55 | mpd | ⊢ ( 𝐴 ∈ 𝑆 → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) |