This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for alexsubALT . A compact space has a subbase such that every cover taken from it has a finite subcover. (Contributed by Jeff Hankins, 27-Jan-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | alexsubALT.1 | |- X = U. J |
|
| Assertion | alexsubALTlem1 | |- ( J e. Comp -> E. x ( J = ( topGen ` ( fi ` x ) ) /\ A. c e. ~P x ( X = U. c -> E. d e. ( ~P c i^i Fin ) X = U. d ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexsubALT.1 | |- X = U. J |
|
| 2 | cmptop | |- ( J e. Comp -> J e. Top ) |
|
| 3 | fitop | |- ( J e. Top -> ( fi ` J ) = J ) |
|
| 4 | 3 | fveq2d | |- ( J e. Top -> ( topGen ` ( fi ` J ) ) = ( topGen ` J ) ) |
| 5 | tgtop | |- ( J e. Top -> ( topGen ` J ) = J ) |
|
| 6 | 4 5 | eqtr2d | |- ( J e. Top -> J = ( topGen ` ( fi ` J ) ) ) |
| 7 | 2 6 | syl | |- ( J e. Comp -> J = ( topGen ` ( fi ` J ) ) ) |
| 8 | velpw | |- ( c e. ~P J <-> c C_ J ) |
|
| 9 | 1 | cmpcov | |- ( ( J e. Comp /\ c C_ J /\ X = U. c ) -> E. d e. ( ~P c i^i Fin ) X = U. d ) |
| 10 | 9 | 3exp | |- ( J e. Comp -> ( c C_ J -> ( X = U. c -> E. d e. ( ~P c i^i Fin ) X = U. d ) ) ) |
| 11 | 8 10 | biimtrid | |- ( J e. Comp -> ( c e. ~P J -> ( X = U. c -> E. d e. ( ~P c i^i Fin ) X = U. d ) ) ) |
| 12 | 11 | ralrimiv | |- ( J e. Comp -> A. c e. ~P J ( X = U. c -> E. d e. ( ~P c i^i Fin ) X = U. d ) ) |
| 13 | 2fveq3 | |- ( x = J -> ( topGen ` ( fi ` x ) ) = ( topGen ` ( fi ` J ) ) ) |
|
| 14 | 13 | eqeq2d | |- ( x = J -> ( J = ( topGen ` ( fi ` x ) ) <-> J = ( topGen ` ( fi ` J ) ) ) ) |
| 15 | pweq | |- ( x = J -> ~P x = ~P J ) |
|
| 16 | 15 | raleqdv | |- ( x = J -> ( A. c e. ~P x ( X = U. c -> E. d e. ( ~P c i^i Fin ) X = U. d ) <-> A. c e. ~P J ( X = U. c -> E. d e. ( ~P c i^i Fin ) X = U. d ) ) ) |
| 17 | 14 16 | anbi12d | |- ( x = J -> ( ( J = ( topGen ` ( fi ` x ) ) /\ A. c e. ~P x ( X = U. c -> E. d e. ( ~P c i^i Fin ) X = U. d ) ) <-> ( J = ( topGen ` ( fi ` J ) ) /\ A. c e. ~P J ( X = U. c -> E. d e. ( ~P c i^i Fin ) X = U. d ) ) ) ) |
| 18 | 17 | spcegv | |- ( J e. Comp -> ( ( J = ( topGen ` ( fi ` J ) ) /\ A. c e. ~P J ( X = U. c -> E. d e. ( ~P c i^i Fin ) X = U. d ) ) -> E. x ( J = ( topGen ` ( fi ` x ) ) /\ A. c e. ~P x ( X = U. c -> E. d e. ( ~P c i^i Fin ) X = U. d ) ) ) ) |
| 19 | 7 12 18 | mp2and | |- ( J e. Comp -> E. x ( J = ( topGen ` ( fi ` x ) ) /\ A. c e. ~P x ( X = U. c -> E. d e. ( ~P c i^i Fin ) X = U. d ) ) ) |