This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domtriord | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbth | ⊢ ( ( 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵 ) → 𝐵 ≈ 𝐴 ) | |
| 2 | 1 | expcom | ⊢ ( 𝐴 ≼ 𝐵 → ( 𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴 ) ) |
| 3 | 2 | a1i | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 → ( 𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴 ) ) ) |
| 4 | iman | ⊢ ( ( 𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴 ) ↔ ¬ ( 𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴 ) ) | |
| 5 | brsdom | ⊢ ( 𝐵 ≺ 𝐴 ↔ ( 𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴 ) ) | |
| 6 | 4 5 | xchbinxr | ⊢ ( ( 𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴 ) ↔ ¬ 𝐵 ≺ 𝐴 ) |
| 7 | 3 6 | imbitrdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) ) |
| 8 | onelss | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) | |
| 9 | ssdomg | ⊢ ( 𝐵 ∈ On → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) | |
| 10 | 8 9 | syld | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| 12 | 11 | con3d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → ¬ 𝐴 ∈ 𝐵 ) ) |
| 13 | ontri1 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) | |
| 14 | 13 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
| 15 | 12 14 | sylibrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → 𝐵 ⊆ 𝐴 ) ) |
| 16 | ssdomg | ⊢ ( 𝐴 ∈ On → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) |
| 18 | 15 17 | syld | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → 𝐵 ≼ 𝐴 ) ) |
| 19 | ensym | ⊢ ( 𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵 ) | |
| 20 | endom | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 21 | 19 20 | syl | ⊢ ( 𝐵 ≈ 𝐴 → 𝐴 ≼ 𝐵 ) |
| 22 | 21 | con3i | ⊢ ( ¬ 𝐴 ≼ 𝐵 → ¬ 𝐵 ≈ 𝐴 ) |
| 23 | 18 22 | jca2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → ( 𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴 ) ) ) |
| 24 | 23 5 | imbitrrdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → 𝐵 ≺ 𝐴 ) ) |
| 25 | 24 | con1d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵 ) ) |
| 26 | 7 25 | impbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |