This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No set has equinumerosity between an aleph and its successor aleph. (Contributed by NM, 3-Nov-2003) (Revised by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephnbtwn2 | ⊢ ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardidm | ⊢ ( card ‘ ( card ‘ 𝐵 ) ) = ( card ‘ 𝐵 ) | |
| 2 | alephnbtwn | ⊢ ( ( card ‘ ( card ‘ 𝐵 ) ) = ( card ‘ 𝐵 ) → ¬ ( ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ∧ ( card ‘ 𝐵 ) ∈ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ¬ ( ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ∧ ( card ‘ 𝐵 ) ∈ ( ℵ ‘ suc 𝐴 ) ) |
| 4 | alephon | ⊢ ( ℵ ‘ suc 𝐴 ) ∈ On | |
| 5 | sdomdom | ⊢ ( 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) → 𝐵 ≼ ( ℵ ‘ suc 𝐴 ) ) | |
| 6 | ondomen | ⊢ ( ( ( ℵ ‘ suc 𝐴 ) ∈ On ∧ 𝐵 ≼ ( ℵ ‘ suc 𝐴 ) ) → 𝐵 ∈ dom card ) | |
| 7 | 4 5 6 | sylancr | ⊢ ( 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) → 𝐵 ∈ dom card ) |
| 8 | cardid2 | ⊢ ( 𝐵 ∈ dom card → ( card ‘ 𝐵 ) ≈ 𝐵 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) → ( card ‘ 𝐵 ) ≈ 𝐵 ) |
| 10 | 9 | ensymd | ⊢ ( 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) → 𝐵 ≈ ( card ‘ 𝐵 ) ) |
| 11 | sdomentr | ⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≈ ( card ‘ 𝐵 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( card ‘ 𝐵 ) ) | |
| 12 | 10 11 | sylan2 | ⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( card ‘ 𝐵 ) ) |
| 13 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 14 | cardon | ⊢ ( card ‘ 𝐵 ) ∈ On | |
| 15 | onenon | ⊢ ( ( card ‘ 𝐵 ) ∈ On → ( card ‘ 𝐵 ) ∈ dom card ) | |
| 16 | 14 15 | ax-mp | ⊢ ( card ‘ 𝐵 ) ∈ dom card |
| 17 | cardsdomel | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ ( card ‘ 𝐵 ) ∈ dom card ) → ( ( ℵ ‘ 𝐴 ) ≺ ( card ‘ 𝐵 ) ↔ ( ℵ ‘ 𝐴 ) ∈ ( card ‘ ( card ‘ 𝐵 ) ) ) ) | |
| 18 | 13 16 17 | mp2an | ⊢ ( ( ℵ ‘ 𝐴 ) ≺ ( card ‘ 𝐵 ) ↔ ( ℵ ‘ 𝐴 ) ∈ ( card ‘ ( card ‘ 𝐵 ) ) ) |
| 19 | 1 | eleq2i | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ ( card ‘ ( card ‘ 𝐵 ) ) ↔ ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ) |
| 20 | 18 19 | bitri | ⊢ ( ( ℵ ‘ 𝐴 ) ≺ ( card ‘ 𝐵 ) ↔ ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ) |
| 21 | 12 20 | sylib | ⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) → ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ) |
| 22 | ensdomtr | ⊢ ( ( ( card ‘ 𝐵 ) ≈ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) → ( card ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐴 ) ) | |
| 23 | 9 22 | mpancom | ⊢ ( 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) → ( card ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
| 24 | 23 | adantl | ⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) → ( card ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
| 25 | onenon | ⊢ ( ( ℵ ‘ suc 𝐴 ) ∈ On → ( ℵ ‘ suc 𝐴 ) ∈ dom card ) | |
| 26 | 4 25 | ax-mp | ⊢ ( ℵ ‘ suc 𝐴 ) ∈ dom card |
| 27 | cardsdomel | ⊢ ( ( ( card ‘ 𝐵 ) ∈ On ∧ ( ℵ ‘ suc 𝐴 ) ∈ dom card ) → ( ( card ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐴 ) ↔ ( card ‘ 𝐵 ) ∈ ( card ‘ ( ℵ ‘ suc 𝐴 ) ) ) ) | |
| 28 | 14 26 27 | mp2an | ⊢ ( ( card ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐴 ) ↔ ( card ‘ 𝐵 ) ∈ ( card ‘ ( ℵ ‘ suc 𝐴 ) ) ) |
| 29 | alephcard | ⊢ ( card ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) | |
| 30 | 29 | eleq2i | ⊢ ( ( card ‘ 𝐵 ) ∈ ( card ‘ ( ℵ ‘ suc 𝐴 ) ) ↔ ( card ‘ 𝐵 ) ∈ ( ℵ ‘ suc 𝐴 ) ) |
| 31 | 28 30 | bitri | ⊢ ( ( card ‘ 𝐵 ) ≺ ( ℵ ‘ suc 𝐴 ) ↔ ( card ‘ 𝐵 ) ∈ ( ℵ ‘ suc 𝐴 ) ) |
| 32 | 24 31 | sylib | ⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) → ( card ‘ 𝐵 ) ∈ ( ℵ ‘ suc 𝐴 ) ) |
| 33 | 21 32 | jca | ⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) → ( ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ∧ ( card ‘ 𝐵 ) ∈ ( ℵ ‘ suc 𝐴 ) ) ) |
| 34 | 3 33 | mto | ⊢ ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ∧ 𝐵 ≺ ( ℵ ‘ suc 𝐴 ) ) |