This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of Gleason p. 195. (Contributed by NM, 26-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abs1m | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) | |
| 2 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 3 | 1 2 | eqtrdi | ⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = 0 ) |
| 4 | oveq2 | ⊢ ( 𝐴 = 0 → ( 𝑥 · 𝐴 ) = ( 𝑥 · 0 ) ) | |
| 5 | 3 4 | eqeq12d | ⊢ ( 𝐴 = 0 → ( ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ↔ 0 = ( 𝑥 · 0 ) ) ) |
| 6 | 5 | anbi2d | ⊢ ( 𝐴 = 0 → ( ( ( abs ‘ 𝑥 ) = 1 ∧ ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ) ↔ ( ( abs ‘ 𝑥 ) = 1 ∧ 0 = ( 𝑥 · 0 ) ) ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝐴 = 0 → ( ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ) ↔ ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ 0 = ( 𝑥 · 0 ) ) ) ) |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 9 | 8 | cjcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 10 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 13 | abs00 | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) | |
| 14 | 13 | necon3bid | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
| 15 | 14 | biimpar | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 16 | 9 12 15 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 17 | absdiv | ⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ) → ( abs ‘ ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) = ( ( abs ‘ ( ∗ ‘ 𝐴 ) ) / ( abs ‘ ( abs ‘ 𝐴 ) ) ) ) | |
| 18 | 9 12 15 17 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) = ( ( abs ‘ ( ∗ ‘ 𝐴 ) ) / ( abs ‘ ( abs ‘ 𝐴 ) ) ) ) |
| 19 | abscj | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 21 | absidm | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 23 | 20 22 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( ∗ ‘ 𝐴 ) ) / ( abs ‘ ( abs ‘ 𝐴 ) ) ) = ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) |
| 24 | 12 15 | dividd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) = 1 ) |
| 25 | 18 23 24 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) = 1 ) |
| 26 | 8 9 12 15 | divassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) / ( abs ‘ 𝐴 ) ) = ( 𝐴 · ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) ) |
| 27 | 12 | sqvald | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) |
| 28 | absvalsq | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 30 | 27 29 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 31 | 12 12 15 30 | mvllmuld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 32 | 16 8 | mulcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) · 𝐴 ) = ( 𝐴 · ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) ) |
| 33 | 26 31 32 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) = ( ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) · 𝐴 ) ) |
| 34 | fveqeq2 | ⊢ ( 𝑥 = ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) → ( ( abs ‘ 𝑥 ) = 1 ↔ ( abs ‘ ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) = 1 ) ) | |
| 35 | oveq1 | ⊢ ( 𝑥 = ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) → ( 𝑥 · 𝐴 ) = ( ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) · 𝐴 ) ) | |
| 36 | 35 | eqeq2d | ⊢ ( 𝑥 = ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ↔ ( abs ‘ 𝐴 ) = ( ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) · 𝐴 ) ) ) |
| 37 | 34 36 | anbi12d | ⊢ ( 𝑥 = ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) → ( ( ( abs ‘ 𝑥 ) = 1 ∧ ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ) ↔ ( ( abs ‘ ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) = 1 ∧ ( abs ‘ 𝐴 ) = ( ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) · 𝐴 ) ) ) ) |
| 38 | 37 | rspcev | ⊢ ( ( ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ∈ ℂ ∧ ( ( abs ‘ ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) = 1 ∧ ( abs ‘ 𝐴 ) = ( ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) · 𝐴 ) ) ) → ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ) ) |
| 39 | 16 25 33 38 | syl12anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ) ) |
| 40 | ax-icn | ⊢ i ∈ ℂ | |
| 41 | absi | ⊢ ( abs ‘ i ) = 1 | |
| 42 | it0e0 | ⊢ ( i · 0 ) = 0 | |
| 43 | 42 | eqcomi | ⊢ 0 = ( i · 0 ) |
| 44 | 41 43 | pm3.2i | ⊢ ( ( abs ‘ i ) = 1 ∧ 0 = ( i · 0 ) ) |
| 45 | fveqeq2 | ⊢ ( 𝑥 = i → ( ( abs ‘ 𝑥 ) = 1 ↔ ( abs ‘ i ) = 1 ) ) | |
| 46 | oveq1 | ⊢ ( 𝑥 = i → ( 𝑥 · 0 ) = ( i · 0 ) ) | |
| 47 | 46 | eqeq2d | ⊢ ( 𝑥 = i → ( 0 = ( 𝑥 · 0 ) ↔ 0 = ( i · 0 ) ) ) |
| 48 | 45 47 | anbi12d | ⊢ ( 𝑥 = i → ( ( ( abs ‘ 𝑥 ) = 1 ∧ 0 = ( 𝑥 · 0 ) ) ↔ ( ( abs ‘ i ) = 1 ∧ 0 = ( i · 0 ) ) ) ) |
| 49 | 48 | rspcev | ⊢ ( ( i ∈ ℂ ∧ ( ( abs ‘ i ) = 1 ∧ 0 = ( i · 0 ) ) ) → ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ 0 = ( 𝑥 · 0 ) ) ) |
| 50 | 40 44 49 | mp2an | ⊢ ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ 0 = ( 𝑥 · 0 ) ) |
| 51 | 50 | a1i | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ 0 = ( 𝑥 · 0 ) ) ) |
| 52 | 7 39 51 | pm2.61ne | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ) ) |