This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of Gleason p. 133. (Contributed by NM, 28-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abscj | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | absval | ⊢ ( ( ∗ ‘ 𝐴 ) ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( √ ‘ ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( √ ‘ ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 4 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) | |
| 5 | 1 4 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
| 6 | cjcj | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
| 8 | 5 7 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( √ ‘ ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 10 | 3 9 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 11 | absval | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) | |
| 12 | 10 11 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |