This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | fvoveq1 | ⊢ ( 𝑥 = 1 → ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 1 · 𝐴 ) ) ) | |
| 3 | fvoveq1 | ⊢ ( 𝑥 = 1 → ( ℜ ‘ ( 𝑥 · 𝐵 ) ) = ( ℜ ‘ ( 1 · 𝐵 ) ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝑥 = 1 → ( ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) ↔ ( ℜ ‘ ( 1 · 𝐴 ) ) = ( ℜ ‘ ( 1 · 𝐵 ) ) ) ) |
| 5 | 4 | rspcv | ⊢ ( 1 ∈ ℂ → ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) → ( ℜ ‘ ( 1 · 𝐴 ) ) = ( ℜ ‘ ( 1 · 𝐵 ) ) ) ) |
| 6 | 1 5 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) → ( ℜ ‘ ( 1 · 𝐴 ) ) = ( ℜ ‘ ( 1 · 𝐵 ) ) ) |
| 7 | negicn | ⊢ - i ∈ ℂ | |
| 8 | fvoveq1 | ⊢ ( 𝑥 = - i → ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( - i · 𝐴 ) ) ) | |
| 9 | fvoveq1 | ⊢ ( 𝑥 = - i → ( ℜ ‘ ( 𝑥 · 𝐵 ) ) = ( ℜ ‘ ( - i · 𝐵 ) ) ) | |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝑥 = - i → ( ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) ↔ ( ℜ ‘ ( - i · 𝐴 ) ) = ( ℜ ‘ ( - i · 𝐵 ) ) ) ) |
| 11 | 10 | rspcv | ⊢ ( - i ∈ ℂ → ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) → ( ℜ ‘ ( - i · 𝐴 ) ) = ( ℜ ‘ ( - i · 𝐵 ) ) ) ) |
| 12 | 7 11 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) → ( ℜ ‘ ( - i · 𝐴 ) ) = ( ℜ ‘ ( - i · 𝐵 ) ) ) |
| 13 | 12 | oveq2d | ⊢ ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) → ( i · ( ℜ ‘ ( - i · 𝐴 ) ) ) = ( i · ( ℜ ‘ ( - i · 𝐵 ) ) ) ) |
| 14 | 6 13 | oveq12d | ⊢ ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) → ( ( ℜ ‘ ( 1 · 𝐴 ) ) + ( i · ( ℜ ‘ ( - i · 𝐴 ) ) ) ) = ( ( ℜ ‘ ( 1 · 𝐵 ) ) + ( i · ( ℜ ‘ ( - i · 𝐵 ) ) ) ) ) |
| 15 | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 16 | mullid | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) | |
| 17 | 16 | eqcomd | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( 1 · 𝐴 ) ) |
| 18 | 17 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ℜ ‘ ( 1 · 𝐴 ) ) ) |
| 19 | imre | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( - i · 𝐴 ) ) ) | |
| 20 | 19 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) = ( i · ( ℜ ‘ ( - i · 𝐴 ) ) ) ) |
| 21 | 18 20 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ ( 1 · 𝐴 ) ) + ( i · ( ℜ ‘ ( - i · 𝐴 ) ) ) ) ) |
| 22 | 15 21 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ ( 1 · 𝐴 ) ) + ( i · ( ℜ ‘ ( - i · 𝐴 ) ) ) ) ) |
| 23 | replim | ⊢ ( 𝐵 ∈ ℂ → 𝐵 = ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) | |
| 24 | mullid | ⊢ ( 𝐵 ∈ ℂ → ( 1 · 𝐵 ) = 𝐵 ) | |
| 25 | 24 | eqcomd | ⊢ ( 𝐵 ∈ ℂ → 𝐵 = ( 1 · 𝐵 ) ) |
| 26 | 25 | fveq2d | ⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) = ( ℜ ‘ ( 1 · 𝐵 ) ) ) |
| 27 | imre | ⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) = ( ℜ ‘ ( - i · 𝐵 ) ) ) | |
| 28 | 27 | oveq2d | ⊢ ( 𝐵 ∈ ℂ → ( i · ( ℑ ‘ 𝐵 ) ) = ( i · ( ℜ ‘ ( - i · 𝐵 ) ) ) ) |
| 29 | 26 28 | oveq12d | ⊢ ( 𝐵 ∈ ℂ → ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) = ( ( ℜ ‘ ( 1 · 𝐵 ) ) + ( i · ( ℜ ‘ ( - i · 𝐵 ) ) ) ) ) |
| 30 | 23 29 | eqtrd | ⊢ ( 𝐵 ∈ ℂ → 𝐵 = ( ( ℜ ‘ ( 1 · 𝐵 ) ) + ( i · ( ℜ ‘ ( - i · 𝐵 ) ) ) ) ) |
| 31 | 22 30 | eqeqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 = 𝐵 ↔ ( ( ℜ ‘ ( 1 · 𝐴 ) ) + ( i · ( ℜ ‘ ( - i · 𝐴 ) ) ) ) = ( ( ℜ ‘ ( 1 · 𝐵 ) ) + ( i · ( ℜ ‘ ( - i · 𝐵 ) ) ) ) ) ) |
| 32 | 14 31 | imbitrrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) → 𝐴 = 𝐵 ) ) |
| 33 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑥 · 𝐴 ) = ( 𝑥 · 𝐵 ) ) | |
| 34 | 33 | fveq2d | ⊢ ( 𝐴 = 𝐵 → ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) ) |
| 35 | 34 | ralrimivw | ⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) ) |
| 36 | 32 35 | impbid1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |