This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of Gleason p. 195. (Contributed by NM, 26-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abs1m | |- ( A e. CC -> E. x e. CC ( ( abs ` x ) = 1 /\ ( abs ` A ) = ( x x. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) |
|
| 2 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 3 | 1 2 | eqtrdi | |- ( A = 0 -> ( abs ` A ) = 0 ) |
| 4 | oveq2 | |- ( A = 0 -> ( x x. A ) = ( x x. 0 ) ) |
|
| 5 | 3 4 | eqeq12d | |- ( A = 0 -> ( ( abs ` A ) = ( x x. A ) <-> 0 = ( x x. 0 ) ) ) |
| 6 | 5 | anbi2d | |- ( A = 0 -> ( ( ( abs ` x ) = 1 /\ ( abs ` A ) = ( x x. A ) ) <-> ( ( abs ` x ) = 1 /\ 0 = ( x x. 0 ) ) ) ) |
| 7 | 6 | rexbidv | |- ( A = 0 -> ( E. x e. CC ( ( abs ` x ) = 1 /\ ( abs ` A ) = ( x x. A ) ) <-> E. x e. CC ( ( abs ` x ) = 1 /\ 0 = ( x x. 0 ) ) ) ) |
| 8 | simpl | |- ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) |
|
| 9 | 8 | cjcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( * ` A ) e. CC ) |
| 10 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 11 | 10 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
| 12 | 11 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. CC ) |
| 13 | abs00 | |- ( A e. CC -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
|
| 14 | 13 | necon3bid | |- ( A e. CC -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) |
| 15 | 14 | biimpar | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) |
| 16 | 9 12 15 | divcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( * ` A ) / ( abs ` A ) ) e. CC ) |
| 17 | absdiv | |- ( ( ( * ` A ) e. CC /\ ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 ) -> ( abs ` ( ( * ` A ) / ( abs ` A ) ) ) = ( ( abs ` ( * ` A ) ) / ( abs ` ( abs ` A ) ) ) ) |
|
| 18 | 9 12 15 17 | syl3anc | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( ( * ` A ) / ( abs ` A ) ) ) = ( ( abs ` ( * ` A ) ) / ( abs ` ( abs ` A ) ) ) ) |
| 19 | abscj | |- ( A e. CC -> ( abs ` ( * ` A ) ) = ( abs ` A ) ) |
|
| 20 | 19 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( * ` A ) ) = ( abs ` A ) ) |
| 21 | absidm | |- ( A e. CC -> ( abs ` ( abs ` A ) ) = ( abs ` A ) ) |
|
| 22 | 21 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( abs ` A ) ) = ( abs ` A ) ) |
| 23 | 20 22 | oveq12d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` ( * ` A ) ) / ( abs ` ( abs ` A ) ) ) = ( ( abs ` A ) / ( abs ` A ) ) ) |
| 24 | 12 15 | dividd | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) / ( abs ` A ) ) = 1 ) |
| 25 | 18 23 24 | 3eqtrd | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( ( * ` A ) / ( abs ` A ) ) ) = 1 ) |
| 26 | 8 9 12 15 | divassd | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( A x. ( * ` A ) ) / ( abs ` A ) ) = ( A x. ( ( * ` A ) / ( abs ` A ) ) ) ) |
| 27 | 12 | sqvald | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
| 28 | absvalsq | |- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
|
| 29 | 28 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
| 30 | 27 29 | eqtr3d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) x. ( abs ` A ) ) = ( A x. ( * ` A ) ) ) |
| 31 | 12 12 15 30 | mvllmuld | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) = ( ( A x. ( * ` A ) ) / ( abs ` A ) ) ) |
| 32 | 16 8 | mulcomd | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( * ` A ) / ( abs ` A ) ) x. A ) = ( A x. ( ( * ` A ) / ( abs ` A ) ) ) ) |
| 33 | 26 31 32 | 3eqtr4d | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) = ( ( ( * ` A ) / ( abs ` A ) ) x. A ) ) |
| 34 | fveqeq2 | |- ( x = ( ( * ` A ) / ( abs ` A ) ) -> ( ( abs ` x ) = 1 <-> ( abs ` ( ( * ` A ) / ( abs ` A ) ) ) = 1 ) ) |
|
| 35 | oveq1 | |- ( x = ( ( * ` A ) / ( abs ` A ) ) -> ( x x. A ) = ( ( ( * ` A ) / ( abs ` A ) ) x. A ) ) |
|
| 36 | 35 | eqeq2d | |- ( x = ( ( * ` A ) / ( abs ` A ) ) -> ( ( abs ` A ) = ( x x. A ) <-> ( abs ` A ) = ( ( ( * ` A ) / ( abs ` A ) ) x. A ) ) ) |
| 37 | 34 36 | anbi12d | |- ( x = ( ( * ` A ) / ( abs ` A ) ) -> ( ( ( abs ` x ) = 1 /\ ( abs ` A ) = ( x x. A ) ) <-> ( ( abs ` ( ( * ` A ) / ( abs ` A ) ) ) = 1 /\ ( abs ` A ) = ( ( ( * ` A ) / ( abs ` A ) ) x. A ) ) ) ) |
| 38 | 37 | rspcev | |- ( ( ( ( * ` A ) / ( abs ` A ) ) e. CC /\ ( ( abs ` ( ( * ` A ) / ( abs ` A ) ) ) = 1 /\ ( abs ` A ) = ( ( ( * ` A ) / ( abs ` A ) ) x. A ) ) ) -> E. x e. CC ( ( abs ` x ) = 1 /\ ( abs ` A ) = ( x x. A ) ) ) |
| 39 | 16 25 33 38 | syl12anc | |- ( ( A e. CC /\ A =/= 0 ) -> E. x e. CC ( ( abs ` x ) = 1 /\ ( abs ` A ) = ( x x. A ) ) ) |
| 40 | ax-icn | |- _i e. CC |
|
| 41 | absi | |- ( abs ` _i ) = 1 |
|
| 42 | it0e0 | |- ( _i x. 0 ) = 0 |
|
| 43 | 42 | eqcomi | |- 0 = ( _i x. 0 ) |
| 44 | 41 43 | pm3.2i | |- ( ( abs ` _i ) = 1 /\ 0 = ( _i x. 0 ) ) |
| 45 | fveqeq2 | |- ( x = _i -> ( ( abs ` x ) = 1 <-> ( abs ` _i ) = 1 ) ) |
|
| 46 | oveq1 | |- ( x = _i -> ( x x. 0 ) = ( _i x. 0 ) ) |
|
| 47 | 46 | eqeq2d | |- ( x = _i -> ( 0 = ( x x. 0 ) <-> 0 = ( _i x. 0 ) ) ) |
| 48 | 45 47 | anbi12d | |- ( x = _i -> ( ( ( abs ` x ) = 1 /\ 0 = ( x x. 0 ) ) <-> ( ( abs ` _i ) = 1 /\ 0 = ( _i x. 0 ) ) ) ) |
| 49 | 48 | rspcev | |- ( ( _i e. CC /\ ( ( abs ` _i ) = 1 /\ 0 = ( _i x. 0 ) ) ) -> E. x e. CC ( ( abs ` x ) = 1 /\ 0 = ( x x. 0 ) ) ) |
| 50 | 40 44 49 | mp2an | |- E. x e. CC ( ( abs ` x ) = 1 /\ 0 = ( x x. 0 ) ) |
| 51 | 50 | a1i | |- ( A e. CC -> E. x e. CC ( ( abs ` x ) = 1 /\ 0 = ( x x. 0 ) ) ) |
| 52 | 7 39 51 | pm2.61ne | |- ( A e. CC -> E. x e. CC ( ( abs ` x ) = 1 /\ ( abs ` A ) = ( x x. A ) ) ) |