This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sqlem4 . (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| Assertion | 4sqlem4a | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 2 | gzcn | ⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) | |
| 3 | 2 | absvalsq2d | ⊢ ( 𝐴 ∈ ℤ[i] → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 4 | gzcn | ⊢ ( 𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ ) | |
| 5 | 4 | absvalsq2d | ⊢ ( 𝐵 ∈ ℤ[i] → ( ( abs ‘ 𝐵 ) ↑ 2 ) = ( ( ( ℜ ‘ 𝐵 ) ↑ 2 ) + ( ( ℑ ‘ 𝐵 ) ↑ 2 ) ) ) |
| 6 | 3 5 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) = ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( ℜ ‘ 𝐵 ) ↑ 2 ) + ( ( ℑ ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 7 | elgz | ⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) | |
| 8 | 7 | simp2bi | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ 𝐴 ) ∈ ℤ ) |
| 9 | 7 | simp3bi | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
| 10 | 8 9 | jca | ⊢ ( 𝐴 ∈ ℤ[i] → ( ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) |
| 11 | elgz | ⊢ ( 𝐵 ∈ ℤ[i] ↔ ( 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ℤ ∧ ( ℑ ‘ 𝐵 ) ∈ ℤ ) ) | |
| 12 | 11 | simp2bi | ⊢ ( 𝐵 ∈ ℤ[i] → ( ℜ ‘ 𝐵 ) ∈ ℤ ) |
| 13 | 11 | simp3bi | ⊢ ( 𝐵 ∈ ℤ[i] → ( ℑ ‘ 𝐵 ) ∈ ℤ ) |
| 14 | 12 13 | jca | ⊢ ( 𝐵 ∈ ℤ[i] → ( ( ℜ ‘ 𝐵 ) ∈ ℤ ∧ ( ℑ ‘ 𝐵 ) ∈ ℤ ) ) |
| 15 | 1 | 4sqlem3 | ⊢ ( ( ( ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ∧ ( ( ℜ ‘ 𝐵 ) ∈ ℤ ∧ ( ℑ ‘ 𝐵 ) ∈ ℤ ) ) → ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( ℜ ‘ 𝐵 ) ↑ 2 ) + ( ( ℑ ‘ 𝐵 ) ↑ 2 ) ) ) ∈ 𝑆 ) |
| 16 | 10 14 15 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( ℜ ‘ 𝐵 ) ↑ 2 ) + ( ( ℑ ‘ 𝐵 ) ↑ 2 ) ) ) ∈ 𝑆 ) |
| 17 | 6 16 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ∈ 𝑆 ) |