This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1pthon2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 1pthon2v.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | 1pthon2v | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pthon2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1pthon2v.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) | |
| 4 | 3 | anim2i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐴 ∈ 𝑉 ) ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ( 𝐺 ∈ UHGraph ∧ 𝐴 ∈ 𝑉 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐴 ∈ 𝑉 ) ) |
| 7 | 1 | 0pthonv | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) 𝑝 ) |
| 8 | 6 7 | simpl2im | ⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) 𝑝 ) |
| 9 | oveq2 | ⊢ ( 𝐵 = 𝐴 → ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) ) | |
| 10 | 9 | eqcoms | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) ) |
| 11 | 10 | breqd | ⊢ ( 𝐴 = 𝐵 → ( 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ↔ 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) 𝑝 ) ) |
| 12 | 11 | 2exbidv | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ↔ ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) 𝑝 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → ( ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ↔ ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) 𝑝 ) ) |
| 14 | 8 13 | mpbird | ⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) |
| 15 | 14 | ex | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) |
| 16 | 2 | eleq2i | ⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 17 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 18 | 17 | uhgredgiedgb | ⊢ ( 𝐺 ∈ UHGraph → ( 𝑒 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 19 | 16 18 | bitrid | ⊢ ( 𝐺 ∈ UHGraph → ( 𝑒 ∈ 𝐸 ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑒 ∈ 𝐸 ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 21 | s1cli | ⊢ 〈“ 𝑖 ”〉 ∈ Word V | |
| 22 | s2cli | ⊢ 〈“ 𝐴 𝐵 ”〉 ∈ Word V | |
| 23 | 21 22 | pm3.2i | ⊢ ( 〈“ 𝑖 ”〉 ∈ Word V ∧ 〈“ 𝐴 𝐵 ”〉 ∈ Word V ) |
| 24 | eqid | ⊢ 〈“ 𝐴 𝐵 ”〉 = 〈“ 𝐴 𝐵 ”〉 | |
| 25 | eqid | ⊢ 〈“ 𝑖 ”〉 = 〈“ 𝑖 ”〉 | |
| 26 | simpl2l | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → 𝐴 ∈ 𝑉 ) | |
| 27 | simpl2r | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → 𝐵 ∈ 𝑉 ) | |
| 28 | eqneqall | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 } ) ) | |
| 29 | 28 | com12 | ⊢ ( 𝐴 ≠ 𝐵 → ( 𝐴 = 𝐵 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 } ) ) |
| 30 | 29 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐵 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 } ) ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → ( 𝐴 = 𝐵 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 } ) ) |
| 32 | 31 | imp | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) ∧ 𝐴 = 𝐵 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 } ) |
| 33 | sseq2 | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 ↔ { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | |
| 34 | 33 | adantl | ⊢ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 ↔ { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 35 | 34 | biimpa | ⊢ ( ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
| 36 | 35 | adantl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
| 38 | 24 25 26 27 32 37 1 17 | 1pthond | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → 〈“ 𝑖 ”〉 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 〈“ 𝐴 𝐵 ”〉 ) |
| 39 | breq12 | ⊢ ( ( 𝑓 = 〈“ 𝑖 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 ”〉 ) → ( 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ↔ 〈“ 𝑖 ”〉 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 〈“ 𝐴 𝐵 ”〉 ) ) | |
| 40 | 39 | spc2egv | ⊢ ( ( 〈“ 𝑖 ”〉 ∈ Word V ∧ 〈“ 𝐴 𝐵 ”〉 ∈ Word V ) → ( 〈“ 𝑖 ”〉 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 〈“ 𝐴 𝐵 ”〉 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) |
| 41 | 23 38 40 | mpsyl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) |
| 42 | 41 | exp44 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) ) ) |
| 43 | 42 | rexlimdv | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) ) |
| 44 | 20 43 | sylbid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑒 ∈ 𝐸 → ( { 𝐴 , 𝐵 } ⊆ 𝑒 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) ) |
| 45 | 44 | rexlimdv | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) |
| 46 | 45 | 3exp | ⊢ ( 𝐺 ∈ UHGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ≠ 𝐵 → ( ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) ) ) |
| 47 | 46 | com34 | ⊢ ( 𝐺 ∈ UHGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 → ( 𝐴 ≠ 𝐵 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) ) ) |
| 48 | 47 | 3imp | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) |
| 49 | 48 | com12 | ⊢ ( 𝐴 ≠ 𝐵 → ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) |
| 50 | 15 49 | pm2.61ine | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) |