This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021) (Revised by AV, 23-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| 1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | ||
| 1wlkd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| 1wlkd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| 1wlkd.l | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ 𝐽 ) = { 𝑋 } ) | ||
| 1wlkd.j | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) | ||
| 1wlkd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| 1wlkd.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | 1pthond | ⊢ ( 𝜑 → 𝐹 ( 𝑋 ( PathsOn ‘ 𝐺 ) 𝑌 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| 2 | 1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | |
| 3 | 1wlkd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 4 | 1wlkd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 5 | 1wlkd.l | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ 𝐽 ) = { 𝑋 } ) | |
| 6 | 1wlkd.j | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) | |
| 7 | 1wlkd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 8 | 1wlkd.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 9 | 1 2 3 4 5 6 7 8 | 1wlkd | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 10 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 0 ) = ( 〈“ 𝑋 𝑌 ”〉 ‘ 0 ) |
| 11 | s2fv0 | ⊢ ( 𝑋 ∈ 𝑉 → ( 〈“ 𝑋 𝑌 ”〉 ‘ 0 ) = 𝑋 ) | |
| 12 | 10 11 | eqtrid | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑃 ‘ 0 ) = 𝑋 ) |
| 13 | 3 12 | syl | ⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) = 𝑋 ) |
| 14 | 2 | fveq2i | ⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 ”〉 ) |
| 15 | s1len | ⊢ ( ♯ ‘ 〈“ 𝐽 ”〉 ) = 1 | |
| 16 | 14 15 | eqtri | ⊢ ( ♯ ‘ 𝐹 ) = 1 |
| 17 | 1 16 | fveq12i | ⊢ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 〈“ 𝑋 𝑌 ”〉 ‘ 1 ) |
| 18 | s2fv1 | ⊢ ( 𝑌 ∈ 𝑉 → ( 〈“ 𝑋 𝑌 ”〉 ‘ 1 ) = 𝑌 ) | |
| 19 | 4 18 | syl | ⊢ ( 𝜑 → ( 〈“ 𝑋 𝑌 ”〉 ‘ 1 ) = 𝑌 ) |
| 20 | 17 19 | eqtrid | ⊢ ( 𝜑 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝑌 ) |
| 21 | wlkv | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) | |
| 22 | 3simpc | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) | |
| 23 | 9 21 22 | 3syl | ⊢ ( 𝜑 → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
| 24 | 3 4 23 | jca31 | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
| 25 | 7 | iswlkon | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝑋 ( WalksOn ‘ 𝐺 ) 𝑌 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝑋 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝑌 ) ) ) |
| 26 | 24 25 | syl | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( WalksOn ‘ 𝐺 ) 𝑌 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝑋 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝑌 ) ) ) |
| 27 | 9 13 20 26 | mpbir3and | ⊢ ( 𝜑 → 𝐹 ( 𝑋 ( WalksOn ‘ 𝐺 ) 𝑌 ) 𝑃 ) |
| 28 | 1 2 3 4 5 6 7 8 | 1trld | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| 29 | 7 | istrlson | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝑋 ( TrailsOn ‘ 𝐺 ) 𝑌 ) 𝑃 ↔ ( 𝐹 ( 𝑋 ( WalksOn ‘ 𝐺 ) 𝑌 ) 𝑃 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) ) |
| 30 | 24 29 | syl | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( TrailsOn ‘ 𝐺 ) 𝑌 ) 𝑃 ↔ ( 𝐹 ( 𝑋 ( WalksOn ‘ 𝐺 ) 𝑌 ) 𝑃 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) ) |
| 31 | 27 28 30 | mpbir2and | ⊢ ( 𝜑 → 𝐹 ( 𝑋 ( TrailsOn ‘ 𝐺 ) 𝑌 ) 𝑃 ) |
| 32 | 1 2 3 4 5 6 7 8 | 1pthd | ⊢ ( 𝜑 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
| 33 | 3 | adantl | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ 𝜑 ) → 𝑋 ∈ 𝑉 ) |
| 34 | 4 | adantl | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ 𝜑 ) → 𝑌 ∈ 𝑉 ) |
| 35 | simpl | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ 𝜑 ) → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) | |
| 36 | 33 34 35 | jca31 | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ 𝜑 ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
| 37 | 36 | ex | ⊢ ( ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝜑 → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
| 38 | 21 22 37 | 3syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝜑 → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
| 39 | 9 38 | mpcom | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
| 40 | 7 | ispthson | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝑋 ( PathsOn ‘ 𝐺 ) 𝑌 ) 𝑃 ↔ ( 𝐹 ( 𝑋 ( TrailsOn ‘ 𝐺 ) 𝑌 ) 𝑃 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) ) |
| 41 | 39 40 | syl | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( PathsOn ‘ 𝐺 ) 𝑌 ) 𝑃 ↔ ( 𝐹 ( 𝑋 ( TrailsOn ‘ 𝐺 ) 𝑌 ) 𝑃 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) ) |
| 42 | 31 32 41 | mpbir2and | ⊢ ( 𝜑 → 𝐹 ( 𝑋 ( PathsOn ‘ 𝐺 ) 𝑌 ) 𝑃 ) |