This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021) (Proof shortened by AV, 15-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1pthon2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 1pthon2v.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | 1pthon2ve | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pthon2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1pthon2v.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | id | ⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 → { 𝐴 , 𝐵 } ∈ 𝐸 ) | |
| 4 | sseq2 | ⊢ ( 𝑒 = { 𝐴 , 𝐵 } → ( { 𝐴 , 𝐵 } ⊆ 𝑒 ↔ { 𝐴 , 𝐵 } ⊆ { 𝐴 , 𝐵 } ) ) | |
| 5 | 4 | adantl | ⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ 𝑒 = { 𝐴 , 𝐵 } ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 ↔ { 𝐴 , 𝐵 } ⊆ { 𝐴 , 𝐵 } ) ) |
| 6 | ssidd | ⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 → { 𝐴 , 𝐵 } ⊆ { 𝐴 , 𝐵 } ) | |
| 7 | 3 5 6 | rspcedvd | ⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 → ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) |
| 8 | 1 2 | 1pthon2v | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) |
| 9 | 7 8 | syl3an3 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) |