This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For each vertex there is a path of length 0 from the vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 21-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0pthon.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | 0pthonv | ⊢ ( 𝑁 ∈ 𝑉 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) 𝑝 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pthon.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | snex | ⊢ { 〈 0 , 𝑁 〉 } ∈ V | |
| 4 | 2 3 | pm3.2i | ⊢ ( ∅ ∈ V ∧ { 〈 0 , 𝑁 〉 } ∈ V ) |
| 5 | 1 | 0pthon1 | ⊢ ( 𝑁 ∈ 𝑉 → ∅ ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) { 〈 0 , 𝑁 〉 } ) |
| 6 | breq12 | ⊢ ( ( 𝑓 = ∅ ∧ 𝑝 = { 〈 0 , 𝑁 〉 } ) → ( 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) 𝑝 ↔ ∅ ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) { 〈 0 , 𝑁 〉 } ) ) | |
| 7 | 6 | spc2egv | ⊢ ( ( ∅ ∈ V ∧ { 〈 0 , 𝑁 〉 } ∈ V ) → ( ∅ ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) { 〈 0 , 𝑁 〉 } → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) 𝑝 ) ) |
| 8 | 4 5 7 | mpsyl | ⊢ ( 𝑁 ∈ 𝑉 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) 𝑝 ) |