This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1pthon2v.v | |- V = ( Vtx ` G ) |
|
| 1pthon2v.e | |- E = ( Edg ` G ) |
||
| Assertion | 1pthon2v | |- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pthon2v.v | |- V = ( Vtx ` G ) |
|
| 2 | 1pthon2v.e | |- E = ( Edg ` G ) |
|
| 3 | simpl | |- ( ( A e. V /\ B e. V ) -> A e. V ) |
|
| 4 | 3 | anim2i | |- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) ) -> ( G e. UHGraph /\ A e. V ) ) |
| 5 | 4 | 3adant3 | |- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) -> ( G e. UHGraph /\ A e. V ) ) |
| 6 | 5 | adantl | |- ( ( A = B /\ ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) ) -> ( G e. UHGraph /\ A e. V ) ) |
| 7 | 1 | 0pthonv | |- ( A e. V -> E. f E. p f ( A ( PathsOn ` G ) A ) p ) |
| 8 | 6 7 | simpl2im | |- ( ( A = B /\ ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) ) -> E. f E. p f ( A ( PathsOn ` G ) A ) p ) |
| 9 | oveq2 | |- ( B = A -> ( A ( PathsOn ` G ) B ) = ( A ( PathsOn ` G ) A ) ) |
|
| 10 | 9 | eqcoms | |- ( A = B -> ( A ( PathsOn ` G ) B ) = ( A ( PathsOn ` G ) A ) ) |
| 11 | 10 | breqd | |- ( A = B -> ( f ( A ( PathsOn ` G ) B ) p <-> f ( A ( PathsOn ` G ) A ) p ) ) |
| 12 | 11 | 2exbidv | |- ( A = B -> ( E. f E. p f ( A ( PathsOn ` G ) B ) p <-> E. f E. p f ( A ( PathsOn ` G ) A ) p ) ) |
| 13 | 12 | adantr | |- ( ( A = B /\ ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) ) -> ( E. f E. p f ( A ( PathsOn ` G ) B ) p <-> E. f E. p f ( A ( PathsOn ` G ) A ) p ) ) |
| 14 | 8 13 | mpbird | |- ( ( A = B /\ ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) ) -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) |
| 15 | 14 | ex | |- ( A = B -> ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) |
| 16 | 2 | eleq2i | |- ( e e. E <-> e e. ( Edg ` G ) ) |
| 17 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 18 | 17 | uhgredgiedgb | |- ( G e. UHGraph -> ( e e. ( Edg ` G ) <-> E. i e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` i ) ) ) |
| 19 | 16 18 | bitrid | |- ( G e. UHGraph -> ( e e. E <-> E. i e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` i ) ) ) |
| 20 | 19 | 3ad2ant1 | |- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( e e. E <-> E. i e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` i ) ) ) |
| 21 | s1cli | |- <" i "> e. Word _V |
|
| 22 | s2cli | |- <" A B "> e. Word _V |
|
| 23 | 21 22 | pm3.2i | |- ( <" i "> e. Word _V /\ <" A B "> e. Word _V ) |
| 24 | eqid | |- <" A B "> = <" A B "> |
|
| 25 | eqid | |- <" i "> = <" i "> |
|
| 26 | simpl2l | |- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) -> A e. V ) |
|
| 27 | simpl2r | |- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) -> B e. V ) |
|
| 28 | eqneqall | |- ( A = B -> ( A =/= B -> ( ( iEdg ` G ) ` i ) = { A } ) ) |
|
| 29 | 28 | com12 | |- ( A =/= B -> ( A = B -> ( ( iEdg ` G ) ` i ) = { A } ) ) |
| 30 | 29 | 3ad2ant3 | |- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( A = B -> ( ( iEdg ` G ) ` i ) = { A } ) ) |
| 31 | 30 | adantr | |- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) -> ( A = B -> ( ( iEdg ` G ) ` i ) = { A } ) ) |
| 32 | 31 | imp | |- ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) /\ A = B ) -> ( ( iEdg ` G ) ` i ) = { A } ) |
| 33 | sseq2 | |- ( e = ( ( iEdg ` G ) ` i ) -> ( { A , B } C_ e <-> { A , B } C_ ( ( iEdg ` G ) ` i ) ) ) |
|
| 34 | 33 | adantl | |- ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) -> ( { A , B } C_ e <-> { A , B } C_ ( ( iEdg ` G ) ` i ) ) ) |
| 35 | 34 | biimpa | |- ( ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) -> { A , B } C_ ( ( iEdg ` G ) ` i ) ) |
| 36 | 35 | adantl | |- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) -> { A , B } C_ ( ( iEdg ` G ) ` i ) ) |
| 37 | 36 | adantr | |- ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) /\ A =/= B ) -> { A , B } C_ ( ( iEdg ` G ) ` i ) ) |
| 38 | 24 25 26 27 32 37 1 17 | 1pthond | |- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) -> <" i "> ( A ( PathsOn ` G ) B ) <" A B "> ) |
| 39 | breq12 | |- ( ( f = <" i "> /\ p = <" A B "> ) -> ( f ( A ( PathsOn ` G ) B ) p <-> <" i "> ( A ( PathsOn ` G ) B ) <" A B "> ) ) |
|
| 40 | 39 | spc2egv | |- ( ( <" i "> e. Word _V /\ <" A B "> e. Word _V ) -> ( <" i "> ( A ( PathsOn ` G ) B ) <" A B "> -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) |
| 41 | 23 38 40 | mpsyl | |- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) |
| 42 | 41 | exp44 | |- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( i e. dom ( iEdg ` G ) -> ( e = ( ( iEdg ` G ) ` i ) -> ( { A , B } C_ e -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) ) ) |
| 43 | 42 | rexlimdv | |- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( E. i e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` i ) -> ( { A , B } C_ e -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) ) |
| 44 | 20 43 | sylbid | |- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( e e. E -> ( { A , B } C_ e -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) ) |
| 45 | 44 | rexlimdv | |- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( E. e e. E { A , B } C_ e -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) |
| 46 | 45 | 3exp | |- ( G e. UHGraph -> ( ( A e. V /\ B e. V ) -> ( A =/= B -> ( E. e e. E { A , B } C_ e -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) ) ) |
| 47 | 46 | com34 | |- ( G e. UHGraph -> ( ( A e. V /\ B e. V ) -> ( E. e e. E { A , B } C_ e -> ( A =/= B -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) ) ) |
| 48 | 47 | 3imp | |- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) -> ( A =/= B -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) |
| 49 | 48 | com12 | |- ( A =/= B -> ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) |
| 50 | 15 49 | pm2.61ine | |- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) |