This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 00sr | ⊢ ( 𝐴 ∈ R → ( 𝐴 ·R 0R ) = 0R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | ⊢ R = ( ( P × P ) / ~R ) | |
| 2 | oveq1 | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R 0R ) = ( 𝐴 ·R 0R ) ) | |
| 3 | 2 | eqeq1d | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → ( ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R 0R ) = 0R ↔ ( 𝐴 ·R 0R ) = 0R ) ) |
| 4 | 1pr | ⊢ 1P ∈ P | |
| 5 | mulsrpr | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 1P ∈ P ∧ 1P ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 1P , 1P 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) 〉 ] ~R ) | |
| 6 | 4 4 5 | mpanr12 | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 1P , 1P 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) 〉 ] ~R ) |
| 7 | mulclpr | ⊢ ( ( 𝑥 ∈ P ∧ 1P ∈ P ) → ( 𝑥 ·P 1P ) ∈ P ) | |
| 8 | 4 7 | mpan2 | ⊢ ( 𝑥 ∈ P → ( 𝑥 ·P 1P ) ∈ P ) |
| 9 | mulclpr | ⊢ ( ( 𝑦 ∈ P ∧ 1P ∈ P ) → ( 𝑦 ·P 1P ) ∈ P ) | |
| 10 | 4 9 | mpan2 | ⊢ ( 𝑦 ∈ P → ( 𝑦 ·P 1P ) ∈ P ) |
| 11 | addclpr | ⊢ ( ( ( 𝑥 ·P 1P ) ∈ P ∧ ( 𝑦 ·P 1P ) ∈ P ) → ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P ) | |
| 12 | 8 10 11 | syl2an | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P ) |
| 13 | 12 12 | anim12i | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ) → ( ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P ∧ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P ) ) |
| 14 | eqid | ⊢ ( ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) +P 1P ) = ( ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) +P 1P ) | |
| 15 | enreceq | ⊢ ( ( ( ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P ∧ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P ) ∧ ( 1P ∈ P ∧ 1P ∈ P ) ) → ( [ 〈 ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) 〉 ] ~R = [ 〈 1P , 1P 〉 ] ~R ↔ ( ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) +P 1P ) = ( ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) +P 1P ) ) ) | |
| 16 | 14 15 | mpbiri | ⊢ ( ( ( ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P ∧ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) ∈ P ) ∧ ( 1P ∈ P ∧ 1P ∈ P ) ) → [ 〈 ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) 〉 ] ~R = [ 〈 1P , 1P 〉 ] ~R ) |
| 17 | 13 16 | sylan | ⊢ ( ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ) ∧ ( 1P ∈ P ∧ 1P ∈ P ) ) → [ 〈 ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) 〉 ] ~R = [ 〈 1P , 1P 〉 ] ~R ) |
| 18 | 4 4 17 | mpanr12 | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ) → [ 〈 ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) 〉 ] ~R = [ 〈 1P , 1P 〉 ] ~R ) |
| 19 | 18 | anidms | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → [ 〈 ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P 1P ) ) 〉 ] ~R = [ 〈 1P , 1P 〉 ] ~R ) |
| 20 | 6 19 | eqtrd | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 1P , 1P 〉 ] ~R ) = [ 〈 1P , 1P 〉 ] ~R ) |
| 21 | df-0r | ⊢ 0R = [ 〈 1P , 1P 〉 ] ~R | |
| 22 | 21 | oveq2i | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R 0R ) = ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 1P , 1P 〉 ] ~R ) |
| 23 | 20 22 21 | 3eqtr4g | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R 0R ) = 0R ) |
| 24 | 1 3 23 | ecoptocl | ⊢ ( 𝐴 ∈ R → ( 𝐴 ·R 0R ) = 0R ) |