This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of an element is the same in a submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015) (Proof shortened by AV, 5-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | submod.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑌 ) | |
| submod.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| submod.p | ⊢ 𝑃 = ( od ‘ 𝐻 ) | ||
| Assertion | submod | ⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑂 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submod.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑌 ) | |
| 2 | submod.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | submod.p | ⊢ 𝑃 = ( od ‘ 𝐻 ) | |
| 4 | simpll | ⊢ ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ ℕ ) → 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 5 | nnnn0 | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℕ0 ) |
| 7 | simplr | ⊢ ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ ℕ ) → 𝐴 ∈ 𝑌 ) | |
| 8 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 9 | eqid | ⊢ ( .g ‘ 𝐻 ) = ( .g ‘ 𝐻 ) | |
| 10 | 8 1 9 | submmulg | ⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑥 ∈ ℕ0 ∧ 𝐴 ∈ 𝑌 ) → ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) ) |
| 11 | 4 6 7 10 | syl3anc | ⊢ ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) ) |
| 12 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 13 | 1 12 | subm0 | ⊢ ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ ℕ ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 15 | 11 14 | eqeq12d | ⊢ ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ↔ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) ) ) |
| 16 | 15 | rabbidva | ⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } ) |
| 17 | eqeq1 | ⊢ ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } → ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = ∅ ↔ { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } = ∅ ) ) | |
| 18 | infeq1 | ⊢ ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } → inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } , ℝ , < ) = inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } , ℝ , < ) ) | |
| 19 | 17 18 | ifbieq2d | ⊢ ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } → if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } , ℝ , < ) ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } , ℝ , < ) ) ) |
| 20 | 16 19 | syl | ⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } , ℝ , < ) ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } , ℝ , < ) ) ) |
| 21 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 22 | 21 | submss | ⊢ ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) → 𝑌 ⊆ ( Base ‘ 𝐺 ) ) |
| 23 | 22 | sselda | ⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 24 | eqid | ⊢ { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } | |
| 25 | 21 8 12 2 24 | odval | ⊢ ( 𝐴 ∈ ( Base ‘ 𝐺 ) → ( 𝑂 ‘ 𝐴 ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } , ℝ , < ) ) ) |
| 26 | 23 25 | syl | ⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑂 ‘ 𝐴 ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } , ℝ , < ) ) ) |
| 27 | simpr | ⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐴 ∈ 𝑌 ) | |
| 28 | 22 | adantr | ⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → 𝑌 ⊆ ( Base ‘ 𝐺 ) ) |
| 29 | 1 21 | ressbas2 | ⊢ ( 𝑌 ⊆ ( Base ‘ 𝐺 ) → 𝑌 = ( Base ‘ 𝐻 ) ) |
| 30 | 28 29 | syl | ⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → 𝑌 = ( Base ‘ 𝐻 ) ) |
| 31 | 27 30 | eleqtrd | ⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐴 ∈ ( Base ‘ 𝐻 ) ) |
| 32 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 33 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 34 | eqid | ⊢ { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } | |
| 35 | 32 9 33 3 34 | odval | ⊢ ( 𝐴 ∈ ( Base ‘ 𝐻 ) → ( 𝑃 ‘ 𝐴 ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } , ℝ , < ) ) ) |
| 36 | 31 35 | syl | ⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑃 ‘ 𝐴 ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } , ℝ , < ) ) ) |
| 37 | 20 26 36 | 3eqtr4d | ⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑂 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐴 ) ) |