This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A shorter proof of 0subg using df-od . (Contributed by SN, 31-Jan-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0subgALT.z | |- .0. = ( 0g ` G ) |
|
| Assertion | 0subgALT | |- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0subgALT.z | |- .0. = ( 0g ` G ) |
|
| 2 | eqid | |- ( od ` G ) = ( od ` G ) |
|
| 3 | id | |- ( G e. Grp -> G e. Grp ) |
|
| 4 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 5 | 1 | 0subm | |- ( G e. Mnd -> { .0. } e. ( SubMnd ` G ) ) |
| 6 | 4 5 | syl | |- ( G e. Grp -> { .0. } e. ( SubMnd ` G ) ) |
| 7 | 2 1 | od1 | |- ( G e. Grp -> ( ( od ` G ) ` .0. ) = 1 ) |
| 8 | 1nn | |- 1 e. NN |
|
| 9 | 7 8 | eqeltrdi | |- ( G e. Grp -> ( ( od ` G ) ` .0. ) e. NN ) |
| 10 | 1 | fvexi | |- .0. e. _V |
| 11 | fveq2 | |- ( a = .0. -> ( ( od ` G ) ` a ) = ( ( od ` G ) ` .0. ) ) |
|
| 12 | 11 | eleq1d | |- ( a = .0. -> ( ( ( od ` G ) ` a ) e. NN <-> ( ( od ` G ) ` .0. ) e. NN ) ) |
| 13 | 10 12 | ralsn | |- ( A. a e. { .0. } ( ( od ` G ) ` a ) e. NN <-> ( ( od ` G ) ` .0. ) e. NN ) |
| 14 | 9 13 | sylibr | |- ( G e. Grp -> A. a e. { .0. } ( ( od ` G ) ` a ) e. NN ) |
| 15 | 2 3 6 14 | finodsubmsubg | |- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |