This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0subm.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| Assertion | 0subm | ⊢ ( 𝐺 ∈ Mnd → { 0 } ∈ ( SubMnd ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0subm.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 3 | 2 1 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 4 | 3 | snssd | ⊢ ( 𝐺 ∈ Mnd → { 0 } ⊆ ( Base ‘ 𝐺 ) ) |
| 5 | 1 | fvexi | ⊢ 0 ∈ V |
| 6 | 5 | snid | ⊢ 0 ∈ { 0 } |
| 7 | 6 | a1i | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ { 0 } ) |
| 8 | velsn | ⊢ ( 𝑎 ∈ { 0 } ↔ 𝑎 = 0 ) | |
| 9 | velsn | ⊢ ( 𝑏 ∈ { 0 } ↔ 𝑏 = 0 ) | |
| 10 | 8 9 | anbi12i | ⊢ ( ( 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ↔ ( 𝑎 = 0 ∧ 𝑏 = 0 ) ) |
| 11 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 12 | 2 11 1 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 13 | 3 12 | mpdan | ⊢ ( 𝐺 ∈ Mnd → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 14 | ovex | ⊢ ( 0 ( +g ‘ 𝐺 ) 0 ) ∈ V | |
| 15 | 14 | elsn | ⊢ ( ( 0 ( +g ‘ 𝐺 ) 0 ) ∈ { 0 } ↔ ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 16 | 13 15 | sylibr | ⊢ ( 𝐺 ∈ Mnd → ( 0 ( +g ‘ 𝐺 ) 0 ) ∈ { 0 } ) |
| 17 | oveq12 | ⊢ ( ( 𝑎 = 0 ∧ 𝑏 = 0 ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 0 ( +g ‘ 𝐺 ) 0 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( ( 𝑎 = 0 ∧ 𝑏 = 0 ) → ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ↔ ( 0 ( +g ‘ 𝐺 ) 0 ) ∈ { 0 } ) ) |
| 19 | 16 18 | syl5ibrcom | ⊢ ( 𝐺 ∈ Mnd → ( ( 𝑎 = 0 ∧ 𝑏 = 0 ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ) ) |
| 20 | 10 19 | biimtrid | ⊢ ( 𝐺 ∈ Mnd → ( ( 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ) ) |
| 21 | 20 | ralrimivv | ⊢ ( 𝐺 ∈ Mnd → ∀ 𝑎 ∈ { 0 } ∀ 𝑏 ∈ { 0 } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ) |
| 22 | 2 1 11 | issubm | ⊢ ( 𝐺 ∈ Mnd → ( { 0 } ∈ ( SubMnd ‘ 𝐺 ) ↔ ( { 0 } ⊆ ( Base ‘ 𝐺 ) ∧ 0 ∈ { 0 } ∧ ∀ 𝑎 ∈ { 0 } ∀ 𝑏 ∈ { 0 } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ) ) ) |
| 23 | 4 7 21 22 | mpbir3and | ⊢ ( 𝐺 ∈ Mnd → { 0 } ∈ ( SubMnd ‘ 𝐺 ) ) |