This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the order of an element in a group. (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by Stefan O'Rear, 4-Sep-2015) (Revised by AV, 5-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-od | ⊢ od = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑛 ∈ ℕ ∣ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cod | ⊢ od | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cvv | ⊢ V | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑔 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑔 ) |
| 7 | vn | ⊢ 𝑛 | |
| 8 | cn | ⊢ ℕ | |
| 9 | 7 | cv | ⊢ 𝑛 |
| 10 | cmg | ⊢ .g | |
| 11 | 5 10 | cfv | ⊢ ( .g ‘ 𝑔 ) |
| 12 | 3 | cv | ⊢ 𝑥 |
| 13 | 9 12 11 | co | ⊢ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) |
| 14 | c0g | ⊢ 0g | |
| 15 | 5 14 | cfv | ⊢ ( 0g ‘ 𝑔 ) |
| 16 | 13 15 | wceq | ⊢ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) |
| 17 | 16 7 8 | crab | ⊢ { 𝑛 ∈ ℕ ∣ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } |
| 18 | vi | ⊢ 𝑖 | |
| 19 | 18 | cv | ⊢ 𝑖 |
| 20 | c0 | ⊢ ∅ | |
| 21 | 19 20 | wceq | ⊢ 𝑖 = ∅ |
| 22 | cc0 | ⊢ 0 | |
| 23 | cr | ⊢ ℝ | |
| 24 | clt | ⊢ < | |
| 25 | 19 23 24 | cinf | ⊢ inf ( 𝑖 , ℝ , < ) |
| 26 | 21 22 25 | cif | ⊢ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) |
| 27 | 18 17 26 | csb | ⊢ ⦋ { 𝑛 ∈ ℕ ∣ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) |
| 28 | 3 6 27 | cmpt | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑛 ∈ ℕ ∣ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
| 29 | 1 2 28 | cmpt | ⊢ ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑛 ∈ ℕ ∣ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
| 30 | 0 29 | wceq | ⊢ od = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑛 ∈ ℕ ∣ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |