This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trivsubgd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| trivsubgd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| trivsubgd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| trivsubgd.4 | ⊢ ( 𝜑 → 𝐵 = { 0 } ) | ||
| trivsubgd.5 | ⊢ ( 𝜑 → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | trivsubgd | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trivsubgd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | trivsubgd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | trivsubgd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | trivsubgd.4 | ⊢ ( 𝜑 → 𝐵 = { 0 } ) | |
| 5 | trivsubgd.5 | ⊢ ( 𝜑 → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | 1 | subgss | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐴 ⊆ 𝐵 ) |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 8 | 7 4 | sseqtrd | ⊢ ( 𝜑 → 𝐴 ⊆ { 0 } ) |
| 9 | 2 | subg0cl | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝐴 ) |
| 10 | 5 9 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐴 ) |
| 11 | 10 | snssd | ⊢ ( 𝜑 → { 0 } ⊆ 𝐴 ) |
| 12 | 8 11 | eqssd | ⊢ ( 𝜑 → 𝐴 = { 0 } ) |
| 13 | 12 4 | eqtr4d | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |