This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A path of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 20-Jan-2021) (Revised by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0pthon.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | 0pthon | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pthon.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | 0trlon | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ) |
| 3 | simpl | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) | |
| 4 | id | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 → 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) | |
| 5 | 0z | ⊢ 0 ∈ ℤ | |
| 6 | elfz3 | ⊢ ( 0 ∈ ℤ → 0 ∈ ( 0 ... 0 ) ) | |
| 7 | 5 6 | mp1i | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 → 0 ∈ ( 0 ... 0 ) ) |
| 8 | 4 7 | ffvelcdmd | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
| 10 | eleq1 | ⊢ ( ( 𝑃 ‘ 0 ) = 𝑁 → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ↔ 𝑁 ∈ 𝑉 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ↔ 𝑁 ∈ 𝑉 ) ) |
| 12 | 9 11 | mpbid | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑁 ∈ 𝑉 ) |
| 13 | 1 | 1vgrex | ⊢ ( 𝑁 ∈ 𝑉 → 𝐺 ∈ V ) |
| 14 | 1 | 0pth | ⊢ ( 𝐺 ∈ V → ( ∅ ( Paths ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 15 | 12 13 14 | 3syl | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( ∅ ( Paths ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 16 | 3 15 | mpbird | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( Paths ‘ 𝐺 ) 𝑃 ) |
| 17 | 1 | 0wlkonlem1 | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |
| 18 | 1 | 0wlkonlem2 | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 ∈ ( 𝑉 ↑pm ( 0 ... 0 ) ) ) |
| 19 | 0ex | ⊢ ∅ ∈ V | |
| 20 | 18 19 | jctil | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( ∅ ∈ V ∧ 𝑃 ∈ ( 𝑉 ↑pm ( 0 ... 0 ) ) ) ) |
| 21 | 1 | ispthson | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( ∅ ∈ V ∧ 𝑃 ∈ ( 𝑉 ↑pm ( 0 ... 0 ) ) ) ) → ( ∅ ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ↔ ( ∅ ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ∧ ∅ ( Paths ‘ 𝐺 ) 𝑃 ) ) ) |
| 22 | 17 20 21 | syl2anc | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( ∅ ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ↔ ( ∅ ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ∧ ∅ ( Paths ‘ 𝐺 ) 𝑃 ) ) ) |
| 23 | 2 16 22 | mpbir2and | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ) |