This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair of an empty set (of edges) and a second set (of vertices) is a path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 19-Jan-2021) (Revised by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0pth.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | 0pth | ⊢ ( 𝐺 ∈ 𝑊 → ( ∅ ( Paths ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pth.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | ispth | ⊢ ( ∅ ( Paths ‘ 𝐺 ) 𝑃 ↔ ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ ∅ ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ) = ∅ ) ) | |
| 3 | 2 | a1i | ⊢ ( 𝐺 ∈ 𝑊 → ( ∅ ( Paths ‘ 𝐺 ) 𝑃 ↔ ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ ∅ ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ) = ∅ ) ) ) |
| 4 | 3anass | ⊢ ( ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ ∅ ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ) = ∅ ) ↔ ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ ∅ ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ) = ∅ ) ) ) | |
| 5 | 4 | a1i | ⊢ ( 𝐺 ∈ 𝑊 → ( ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ ∅ ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ) = ∅ ) ↔ ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ ∅ ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ) = ∅ ) ) ) ) |
| 6 | funcnv0 | ⊢ Fun ◡ ∅ | |
| 7 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 8 | 0le1 | ⊢ 0 ≤ 1 | |
| 9 | 7 8 | eqbrtri | ⊢ ( ♯ ‘ ∅ ) ≤ 1 |
| 10 | 1z | ⊢ 1 ∈ ℤ | |
| 11 | 0z | ⊢ 0 ∈ ℤ | |
| 12 | 7 11 | eqeltri | ⊢ ( ♯ ‘ ∅ ) ∈ ℤ |
| 13 | fzon | ⊢ ( ( 1 ∈ ℤ ∧ ( ♯ ‘ ∅ ) ∈ ℤ ) → ( ( ♯ ‘ ∅ ) ≤ 1 ↔ ( 1 ..^ ( ♯ ‘ ∅ ) ) = ∅ ) ) | |
| 14 | 10 12 13 | mp2an | ⊢ ( ( ♯ ‘ ∅ ) ≤ 1 ↔ ( 1 ..^ ( ♯ ‘ ∅ ) ) = ∅ ) |
| 15 | 9 14 | mpbi | ⊢ ( 1 ..^ ( ♯ ‘ ∅ ) ) = ∅ |
| 16 | 15 | reseq2i | ⊢ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) = ( 𝑃 ↾ ∅ ) |
| 17 | res0 | ⊢ ( 𝑃 ↾ ∅ ) = ∅ | |
| 18 | 16 17 | eqtri | ⊢ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) = ∅ |
| 19 | 18 | cnveqi | ⊢ ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) = ◡ ∅ |
| 20 | 19 | funeqi | ⊢ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ↔ Fun ◡ ∅ ) |
| 21 | 6 20 | mpbir | ⊢ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) |
| 22 | 15 | imaeq2i | ⊢ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) = ( 𝑃 “ ∅ ) |
| 23 | ima0 | ⊢ ( 𝑃 “ ∅ ) = ∅ | |
| 24 | 22 23 | eqtri | ⊢ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) = ∅ |
| 25 | 24 | ineq2i | ⊢ ( ( 𝑃 “ { 0 , ( ♯ ‘ ∅ ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ) = ( ( 𝑃 “ { 0 , ( ♯ ‘ ∅ ) } ) ∩ ∅ ) |
| 26 | in0 | ⊢ ( ( 𝑃 “ { 0 , ( ♯ ‘ ∅ ) } ) ∩ ∅ ) = ∅ | |
| 27 | 25 26 | eqtri | ⊢ ( ( 𝑃 “ { 0 , ( ♯ ‘ ∅ ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ) = ∅ |
| 28 | 21 27 | pm3.2i | ⊢ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ ∅ ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ) = ∅ ) |
| 29 | 28 | biantru | ⊢ ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ↔ ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ ∅ ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ) = ∅ ) ) ) |
| 30 | 5 29 | bitr4di | ⊢ ( 𝐺 ∈ 𝑊 → ( ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ ∅ ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ ∅ ) ) ) ) = ∅ ) ↔ ∅ ( Trails ‘ 𝐺 ) 𝑃 ) ) |
| 31 | 1 | 0trl | ⊢ ( 𝐺 ∈ 𝑊 → ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 32 | 3 30 31 | 3bitrd | ⊢ ( 𝐺 ∈ 𝑊 → ( ∅ ( Paths ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |