This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a pair of functions to be a path between two given vertices. (Contributed by Alexander van der Vekens, 8-Nov-2017) (Revised by AV, 16-Jan-2021) (Revised by AV, 21-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pthsonfval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | ispthson | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) ) → ( 𝐹 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthsonfval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | pthsonfval | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } ) |
| 3 | 2 | breqd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } 𝑃 ) ) |
| 4 | breq12 | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ↔ 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) | |
| 5 | breq12 | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ↔ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) | |
| 6 | 4 5 | anbi12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) ↔ ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) ) |
| 7 | eqid | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } | |
| 8 | 6 7 | brabga | ⊢ ( ( 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } 𝑃 ↔ ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) ) |
| 9 | 3 8 | sylan9bb | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) ) → ( 𝐹 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) ) |