This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A trail of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 8-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0wlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | 0trlon | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0wlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | 0wlkon | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 ) |
| 3 | simpl | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) | |
| 4 | 1 | 0wlkonlem1 | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |
| 5 | 1 | 1vgrex | ⊢ ( 𝑁 ∈ 𝑉 → 𝐺 ∈ V ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → 𝐺 ∈ V ) |
| 7 | 1 | 0trl | ⊢ ( 𝐺 ∈ V → ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 8 | 4 6 7 | 3syl | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 9 | 3 8 | mpbird | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( Trails ‘ 𝐺 ) 𝑃 ) |
| 10 | 0ex | ⊢ ∅ ∈ V | |
| 11 | 10 | a1i | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ∈ V ) |
| 12 | 1 | 0wlkonlem2 | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 ∈ ( 𝑉 ↑pm ( 0 ... 0 ) ) ) |
| 13 | 1 | istrlson | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( ∅ ∈ V ∧ 𝑃 ∈ ( 𝑉 ↑pm ( 0 ... 0 ) ) ) ) → ( ∅ ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ↔ ( ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 ∧ ∅ ( Trails ‘ 𝐺 ) 𝑃 ) ) ) |
| 14 | 4 11 12 13 | syl12anc | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( ∅ ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ↔ ( ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 ∧ ∅ ( Trails ‘ 𝐺 ) 𝑃 ) ) ) |
| 15 | 2 9 14 | mpbir2and | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ) |