This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A path of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 20-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0pthon.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | 0pthon1 | ⊢ ( 𝑁 ∈ 𝑉 → ∅ ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) { 〈 0 , 𝑁 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pthon.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eqidd | ⊢ ( 𝑁 ∈ 𝑉 → { 〈 0 , 𝑁 〉 } = { 〈 0 , 𝑁 〉 } ) | |
| 3 | 1fv | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ { 〈 0 , 𝑁 〉 } = { 〈 0 , 𝑁 〉 } ) → ( { 〈 0 , 𝑁 〉 } : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( { 〈 0 , 𝑁 〉 } ‘ 0 ) = 𝑁 ) ) | |
| 4 | 2 3 | mpdan | ⊢ ( 𝑁 ∈ 𝑉 → ( { 〈 0 , 𝑁 〉 } : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( { 〈 0 , 𝑁 〉 } ‘ 0 ) = 𝑁 ) ) |
| 5 | 1 | 0pthon | ⊢ ( ( { 〈 0 , 𝑁 〉 } : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( { 〈 0 , 𝑁 〉 } ‘ 0 ) = 𝑁 ) → ∅ ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) { 〈 0 , 𝑁 〉 } ) |
| 6 | 4 5 | syl | ⊢ ( 𝑁 ∈ 𝑉 → ∅ ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) { 〈 0 , 𝑁 〉 } ) |