This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for 0wlkon and 0trlon . (Contributed by AV, 3-Jan-2021) (Revised by AV, 23-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0wlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | 0wlkonlem2 | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 ∈ ( 𝑉 ↑pm ( 0 ... 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0wlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | ovex | ⊢ ( 0 ... 0 ) ∈ V | |
| 3 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 4 | simpl | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) | |
| 5 | fpmg | ⊢ ( ( ( 0 ... 0 ) ∈ V ∧ 𝑉 ∈ V ∧ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) → 𝑃 ∈ ( 𝑉 ↑pm ( 0 ... 0 ) ) ) | |
| 6 | 2 3 4 5 | mp3an12i | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 ∈ ( 𝑉 ↑pm ( 0 ... 0 ) ) ) |