This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for 0wlkon and 0trlon . (Contributed by AV, 3-Jan-2021) (Revised by AV, 23-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0wlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | 0wlkonlem1 | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0wlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | id | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 → 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) | |
| 3 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 4 | 0elfz | ⊢ ( 0 ∈ ℕ0 → 0 ∈ ( 0 ... 0 ) ) | |
| 5 | 3 4 | mp1i | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 → 0 ∈ ( 0 ... 0 ) ) |
| 6 | 2 5 | ffvelcdmd | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
| 8 | eleq1 | ⊢ ( 𝑁 = ( 𝑃 ‘ 0 ) → ( 𝑁 ∈ 𝑉 ↔ ( 𝑃 ‘ 0 ) ∈ 𝑉 ) ) | |
| 9 | 8 | eqcoms | ⊢ ( ( 𝑃 ‘ 0 ) = 𝑁 → ( 𝑁 ∈ 𝑉 ↔ ( 𝑃 ‘ 0 ) ∈ 𝑉 ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑁 ∈ 𝑉 ↔ ( 𝑃 ‘ 0 ) ∈ 𝑉 ) ) |
| 11 | 7 10 | mpbird | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑁 ∈ 𝑉 ) |
| 12 | id | ⊢ ( 𝑁 ∈ 𝑉 → 𝑁 ∈ 𝑉 ) | |
| 13 | 11 12 | jccir | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |