This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 01sqrexlem1.1 | ⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } | |
| 01sqrexlem1.2 | ⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) | ||
| 01sqrexlem5.3 | ⊢ 𝑇 = { 𝑦 ∣ ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑆 𝑦 = ( 𝑎 · 𝑏 ) } | ||
| Assertion | 01sqrexlem6 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 ↑ 2 ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 01sqrexlem1.1 | ⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } | |
| 2 | 01sqrexlem1.2 | ⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) | |
| 3 | 01sqrexlem5.3 | ⊢ 𝑇 = { 𝑦 ∣ ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑆 𝑦 = ( 𝑎 · 𝑏 ) } | |
| 4 | 1 2 3 | 01sqrexlem5 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑢 ∈ 𝑇 𝑢 ≤ 𝑣 ) ∧ ( 𝐵 ↑ 2 ) = sup ( 𝑇 , ℝ , < ) ) ) |
| 5 | 4 | simprd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 ↑ 2 ) = sup ( 𝑇 , ℝ , < ) ) |
| 6 | vex | ⊢ 𝑣 ∈ V | |
| 7 | eqeq1 | ⊢ ( 𝑦 = 𝑣 → ( 𝑦 = ( 𝑎 · 𝑏 ) ↔ 𝑣 = ( 𝑎 · 𝑏 ) ) ) | |
| 8 | 7 | 2rexbidv | ⊢ ( 𝑦 = 𝑣 → ( ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑆 𝑦 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑆 𝑣 = ( 𝑎 · 𝑏 ) ) ) |
| 9 | 6 8 3 | elab2 | ⊢ ( 𝑣 ∈ 𝑇 ↔ ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑆 𝑣 = ( 𝑎 · 𝑏 ) ) |
| 10 | oveq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) | |
| 11 | 10 | breq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ↑ 2 ) ≤ 𝐴 ↔ ( 𝑎 ↑ 2 ) ≤ 𝐴 ) ) |
| 12 | 11 1 | elrab2 | ⊢ ( 𝑎 ∈ 𝑆 ↔ ( 𝑎 ∈ ℝ+ ∧ ( 𝑎 ↑ 2 ) ≤ 𝐴 ) ) |
| 13 | 12 | simplbi | ⊢ ( 𝑎 ∈ 𝑆 → 𝑎 ∈ ℝ+ ) |
| 14 | oveq1 | ⊢ ( 𝑥 = 𝑏 → ( 𝑥 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) | |
| 15 | 14 | breq1d | ⊢ ( 𝑥 = 𝑏 → ( ( 𝑥 ↑ 2 ) ≤ 𝐴 ↔ ( 𝑏 ↑ 2 ) ≤ 𝐴 ) ) |
| 16 | 15 1 | elrab2 | ⊢ ( 𝑏 ∈ 𝑆 ↔ ( 𝑏 ∈ ℝ+ ∧ ( 𝑏 ↑ 2 ) ≤ 𝐴 ) ) |
| 17 | 16 | simplbi | ⊢ ( 𝑏 ∈ 𝑆 → 𝑏 ∈ ℝ+ ) |
| 18 | rpre | ⊢ ( 𝑎 ∈ ℝ+ → 𝑎 ∈ ℝ ) | |
| 19 | 18 | adantr | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → 𝑎 ∈ ℝ ) |
| 20 | rpre | ⊢ ( 𝑏 ∈ ℝ+ → 𝑏 ∈ ℝ ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → 𝑏 ∈ ℝ ) |
| 22 | rpgt0 | ⊢ ( 𝑏 ∈ ℝ+ → 0 < 𝑏 ) | |
| 23 | 22 | adantl | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → 0 < 𝑏 ) |
| 24 | lemul1 | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 0 < 𝑏 ) ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑏 · 𝑏 ) ) ) | |
| 25 | 19 21 21 23 24 | syl112anc | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑏 · 𝑏 ) ) ) |
| 26 | 13 17 25 | syl2an | ⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑏 · 𝑏 ) ) ) |
| 27 | 17 | rpcnd | ⊢ ( 𝑏 ∈ 𝑆 → 𝑏 ∈ ℂ ) |
| 28 | 27 | sqvald | ⊢ ( 𝑏 ∈ 𝑆 → ( 𝑏 ↑ 2 ) = ( 𝑏 · 𝑏 ) ) |
| 29 | 28 | breq2d | ⊢ ( 𝑏 ∈ 𝑆 → ( ( 𝑎 · 𝑏 ) ≤ ( 𝑏 ↑ 2 ) ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑏 · 𝑏 ) ) ) |
| 30 | 29 | adantl | ⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( ( 𝑎 · 𝑏 ) ≤ ( 𝑏 ↑ 2 ) ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑏 · 𝑏 ) ) ) |
| 31 | 26 30 | bitr4d | ⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑏 ↑ 2 ) ) ) |
| 32 | 31 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑏 ↑ 2 ) ) ) |
| 33 | 16 | simprbi | ⊢ ( 𝑏 ∈ 𝑆 → ( 𝑏 ↑ 2 ) ≤ 𝐴 ) |
| 34 | 33 | ad2antll | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑏 ↑ 2 ) ≤ 𝐴 ) |
| 35 | 13 | rpred | ⊢ ( 𝑎 ∈ 𝑆 → 𝑎 ∈ ℝ ) |
| 36 | 17 | rpred | ⊢ ( 𝑏 ∈ 𝑆 → 𝑏 ∈ ℝ ) |
| 37 | remulcl | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) | |
| 38 | 35 36 37 | syl2an | ⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) |
| 39 | 38 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) |
| 40 | 36 | resqcld | ⊢ ( 𝑏 ∈ 𝑆 → ( 𝑏 ↑ 2 ) ∈ ℝ ) |
| 41 | 40 | ad2antll | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑏 ↑ 2 ) ∈ ℝ ) |
| 42 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → 𝐴 ∈ ℝ ) |
| 44 | letr | ⊢ ( ( ( 𝑎 · 𝑏 ) ∈ ℝ ∧ ( 𝑏 ↑ 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ( 𝑎 · 𝑏 ) ≤ ( 𝑏 ↑ 2 ) ∧ ( 𝑏 ↑ 2 ) ≤ 𝐴 ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) | |
| 45 | 39 41 43 44 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( ( ( 𝑎 · 𝑏 ) ≤ ( 𝑏 ↑ 2 ) ∧ ( 𝑏 ↑ 2 ) ≤ 𝐴 ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
| 46 | 34 45 | mpan2d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( ( 𝑎 · 𝑏 ) ≤ ( 𝑏 ↑ 2 ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
| 47 | 32 46 | sylbid | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 ≤ 𝑏 → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
| 48 | rpgt0 | ⊢ ( 𝑎 ∈ ℝ+ → 0 < 𝑎 ) | |
| 49 | 48 | adantr | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → 0 < 𝑎 ) |
| 50 | lemul2 | ⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ ∧ ( 𝑎 ∈ ℝ ∧ 0 < 𝑎 ) ) → ( 𝑏 ≤ 𝑎 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑎 · 𝑎 ) ) ) | |
| 51 | 21 19 19 49 50 | syl112anc | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → ( 𝑏 ≤ 𝑎 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑎 · 𝑎 ) ) ) |
| 52 | 13 17 51 | syl2an | ⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑏 ≤ 𝑎 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑎 · 𝑎 ) ) ) |
| 53 | 13 | rpcnd | ⊢ ( 𝑎 ∈ 𝑆 → 𝑎 ∈ ℂ ) |
| 54 | 53 | sqvald | ⊢ ( 𝑎 ∈ 𝑆 → ( 𝑎 ↑ 2 ) = ( 𝑎 · 𝑎 ) ) |
| 55 | 54 | breq2d | ⊢ ( 𝑎 ∈ 𝑆 → ( ( 𝑎 · 𝑏 ) ≤ ( 𝑎 ↑ 2 ) ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑎 · 𝑎 ) ) ) |
| 56 | 55 | adantr | ⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( ( 𝑎 · 𝑏 ) ≤ ( 𝑎 ↑ 2 ) ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑎 · 𝑎 ) ) ) |
| 57 | 52 56 | bitr4d | ⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑏 ≤ 𝑎 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑎 ↑ 2 ) ) ) |
| 58 | 57 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑏 ≤ 𝑎 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑎 ↑ 2 ) ) ) |
| 59 | 12 | simprbi | ⊢ ( 𝑎 ∈ 𝑆 → ( 𝑎 ↑ 2 ) ≤ 𝐴 ) |
| 60 | 59 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 ↑ 2 ) ≤ 𝐴 ) |
| 61 | 35 | resqcld | ⊢ ( 𝑎 ∈ 𝑆 → ( 𝑎 ↑ 2 ) ∈ ℝ ) |
| 62 | 61 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 ↑ 2 ) ∈ ℝ ) |
| 63 | letr | ⊢ ( ( ( 𝑎 · 𝑏 ) ∈ ℝ ∧ ( 𝑎 ↑ 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ( 𝑎 · 𝑏 ) ≤ ( 𝑎 ↑ 2 ) ∧ ( 𝑎 ↑ 2 ) ≤ 𝐴 ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) | |
| 64 | 39 62 43 63 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( ( ( 𝑎 · 𝑏 ) ≤ ( 𝑎 ↑ 2 ) ∧ ( 𝑎 ↑ 2 ) ≤ 𝐴 ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
| 65 | 60 64 | mpan2d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( ( 𝑎 · 𝑏 ) ≤ ( 𝑎 ↑ 2 ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
| 66 | 58 65 | sylbid | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑏 ≤ 𝑎 → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
| 67 | 1 2 | 01sqrexlem3 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑣 ∈ 𝑆 𝑣 ≤ 𝑦 ) ) |
| 68 | 67 | simp1d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝑆 ⊆ ℝ ) |
| 69 | 68 | sseld | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑎 ∈ 𝑆 → 𝑎 ∈ ℝ ) ) |
| 70 | 68 | sseld | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑏 ∈ 𝑆 → 𝑏 ∈ ℝ ) ) |
| 71 | 69 70 | anim12d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ) |
| 72 | 71 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) |
| 73 | letric | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 ≤ 𝑏 ∨ 𝑏 ≤ 𝑎 ) ) | |
| 74 | 72 73 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 ≤ 𝑏 ∨ 𝑏 ≤ 𝑎 ) ) |
| 75 | 47 66 74 | mpjaod | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) |
| 76 | 75 | ex | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
| 77 | breq1 | ⊢ ( 𝑣 = ( 𝑎 · 𝑏 ) → ( 𝑣 ≤ 𝐴 ↔ ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) | |
| 78 | 77 | biimprcd | ⊢ ( ( 𝑎 · 𝑏 ) ≤ 𝐴 → ( 𝑣 = ( 𝑎 · 𝑏 ) → 𝑣 ≤ 𝐴 ) ) |
| 79 | 76 78 | syl6 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑣 = ( 𝑎 · 𝑏 ) → 𝑣 ≤ 𝐴 ) ) ) |
| 80 | 79 | rexlimdvv | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑆 𝑣 = ( 𝑎 · 𝑏 ) → 𝑣 ≤ 𝐴 ) ) |
| 81 | 9 80 | biimtrid | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑣 ∈ 𝑇 → 𝑣 ≤ 𝐴 ) ) |
| 82 | 81 | ralrimiv | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ∀ 𝑣 ∈ 𝑇 𝑣 ≤ 𝐴 ) |
| 83 | 4 | simpld | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑢 ∈ 𝑇 𝑢 ≤ 𝑣 ) ) |
| 84 | 42 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐴 ∈ ℝ ) |
| 85 | suprleub | ⊢ ( ( ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑢 ∈ 𝑇 𝑢 ≤ 𝑣 ) ∧ 𝐴 ∈ ℝ ) → ( sup ( 𝑇 , ℝ , < ) ≤ 𝐴 ↔ ∀ 𝑣 ∈ 𝑇 𝑣 ≤ 𝐴 ) ) | |
| 86 | 83 84 85 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( sup ( 𝑇 , ℝ , < ) ≤ 𝐴 ↔ ∀ 𝑣 ∈ 𝑇 𝑣 ≤ 𝐴 ) ) |
| 87 | 82 86 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → sup ( 𝑇 , ℝ , < ) ≤ 𝐴 ) |
| 88 | 5 87 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 ↑ 2 ) ≤ 𝐴 ) |