This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zorn2lem.3 | |- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
|
| zorn2lem.4 | |- C = { z e. A | A. g e. ran f g R z } |
||
| zorn2lem.5 | |- D = { z e. A | A. g e. ( F " x ) g R z } |
||
| Assertion | zorn2lem4 | |- ( ( R Po A /\ w We A ) -> E. x e. On D = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zorn2lem.3 | |- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
|
| 2 | zorn2lem.4 | |- C = { z e. A | A. g e. ran f g R z } |
|
| 3 | zorn2lem.5 | |- D = { z e. A | A. g e. ( F " x ) g R z } |
|
| 4 | pm3.24 | |- -. ( ran F e. _V /\ -. ran F e. _V ) |
|
| 5 | df-ne | |- ( D =/= (/) <-> -. D = (/) ) |
|
| 6 | 5 | ralbii | |- ( A. x e. On D =/= (/) <-> A. x e. On -. D = (/) ) |
| 7 | df-ral | |- ( A. x e. On D =/= (/) <-> A. x ( x e. On -> D =/= (/) ) ) |
|
| 8 | ralnex | |- ( A. x e. On -. D = (/) <-> -. E. x e. On D = (/) ) |
|
| 9 | 6 7 8 | 3bitr3i | |- ( A. x ( x e. On -> D =/= (/) ) <-> -. E. x e. On D = (/) ) |
| 10 | weso | |- ( w We A -> w Or A ) |
|
| 11 | 10 | adantr | |- ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> w Or A ) |
| 12 | vex | |- w e. _V |
|
| 13 | soex | |- ( ( w Or A /\ w e. _V ) -> A e. _V ) |
|
| 14 | 11 12 13 | sylancl | |- ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> A e. _V ) |
| 15 | 1 | tfr1 | |- F Fn On |
| 16 | fvelrnb | |- ( F Fn On -> ( y e. ran F <-> E. x e. On ( F ` x ) = y ) ) |
|
| 17 | 15 16 | ax-mp | |- ( y e. ran F <-> E. x e. On ( F ` x ) = y ) |
| 18 | nfv | |- F/ x w We A |
|
| 19 | nfa1 | |- F/ x A. x ( x e. On -> D =/= (/) ) |
|
| 20 | 18 19 | nfan | |- F/ x ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) |
| 21 | nfv | |- F/ x y e. A |
|
| 22 | 3 | ssrab3 | |- D C_ A |
| 23 | 1 2 3 | zorn2lem1 | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. D ) |
| 24 | 22 23 | sselid | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. A ) |
| 25 | eleq1 | |- ( ( F ` x ) = y -> ( ( F ` x ) e. A <-> y e. A ) ) |
|
| 26 | 24 25 | syl5ibcom | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( ( F ` x ) = y -> y e. A ) ) |
| 27 | 26 | exp32 | |- ( x e. On -> ( w We A -> ( D =/= (/) -> ( ( F ` x ) = y -> y e. A ) ) ) ) |
| 28 | 27 | com12 | |- ( w We A -> ( x e. On -> ( D =/= (/) -> ( ( F ` x ) = y -> y e. A ) ) ) ) |
| 29 | 28 | a2d | |- ( w We A -> ( ( x e. On -> D =/= (/) ) -> ( x e. On -> ( ( F ` x ) = y -> y e. A ) ) ) ) |
| 30 | 29 | spsd | |- ( w We A -> ( A. x ( x e. On -> D =/= (/) ) -> ( x e. On -> ( ( F ` x ) = y -> y e. A ) ) ) ) |
| 31 | 30 | imp | |- ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ( x e. On -> ( ( F ` x ) = y -> y e. A ) ) ) |
| 32 | 20 21 31 | rexlimd | |- ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ( E. x e. On ( F ` x ) = y -> y e. A ) ) |
| 33 | 17 32 | biimtrid | |- ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ( y e. ran F -> y e. A ) ) |
| 34 | 33 | ssrdv | |- ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ran F C_ A ) |
| 35 | 14 34 | ssexd | |- ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ran F e. _V ) |
| 36 | 35 | ex | |- ( w We A -> ( A. x ( x e. On -> D =/= (/) ) -> ran F e. _V ) ) |
| 37 | 36 | adantl | |- ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> ran F e. _V ) ) |
| 38 | 1 2 3 | zorn2lem3 | |- ( ( R Po A /\ ( x e. On /\ ( w We A /\ D =/= (/) ) ) ) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) |
| 39 | 38 | exp45 | |- ( R Po A -> ( x e. On -> ( w We A -> ( D =/= (/) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) ) ) ) |
| 40 | 39 | com23 | |- ( R Po A -> ( w We A -> ( x e. On -> ( D =/= (/) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) ) ) ) |
| 41 | 40 | imp | |- ( ( R Po A /\ w We A ) -> ( x e. On -> ( D =/= (/) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) ) ) |
| 42 | 41 | a2d | |- ( ( R Po A /\ w We A ) -> ( ( x e. On -> D =/= (/) ) -> ( x e. On -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) ) ) |
| 43 | 42 | imp4a | |- ( ( R Po A /\ w We A ) -> ( ( x e. On -> D =/= (/) ) -> ( ( x e. On /\ y e. x ) -> -. ( F ` x ) = ( F ` y ) ) ) ) |
| 44 | 43 | alrimdv | |- ( ( R Po A /\ w We A ) -> ( ( x e. On -> D =/= (/) ) -> A. y ( ( x e. On /\ y e. x ) -> -. ( F ` x ) = ( F ` y ) ) ) ) |
| 45 | 44 | alimdv | |- ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> A. x A. y ( ( x e. On /\ y e. x ) -> -. ( F ` x ) = ( F ` y ) ) ) ) |
| 46 | r2al | |- ( A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) <-> A. x A. y ( ( x e. On /\ y e. x ) -> -. ( F ` x ) = ( F ` y ) ) ) |
|
| 47 | 45 46 | imbitrrdi | |- ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) ) ) |
| 48 | ssid | |- On C_ On |
|
| 49 | 15 | tz7.48lem | |- ( ( On C_ On /\ A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) ) -> Fun `' ( F |` On ) ) |
| 50 | 48 49 | mpan | |- ( A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) -> Fun `' ( F |` On ) ) |
| 51 | fnrel | |- ( F Fn On -> Rel F ) |
|
| 52 | 15 51 | ax-mp | |- Rel F |
| 53 | 15 | fndmi | |- dom F = On |
| 54 | 53 | eqimssi | |- dom F C_ On |
| 55 | relssres | |- ( ( Rel F /\ dom F C_ On ) -> ( F |` On ) = F ) |
|
| 56 | 52 54 55 | mp2an | |- ( F |` On ) = F |
| 57 | 56 | cnveqi | |- `' ( F |` On ) = `' F |
| 58 | 57 | funeqi | |- ( Fun `' ( F |` On ) <-> Fun `' F ) |
| 59 | 50 58 | sylib | |- ( A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) -> Fun `' F ) |
| 60 | 47 59 | syl6 | |- ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> Fun `' F ) ) |
| 61 | onprc | |- -. On e. _V |
|
| 62 | funrnex | |- ( dom `' F e. _V -> ( Fun `' F -> ran `' F e. _V ) ) |
|
| 63 | 62 | com12 | |- ( Fun `' F -> ( dom `' F e. _V -> ran `' F e. _V ) ) |
| 64 | df-rn | |- ran F = dom `' F |
|
| 65 | 64 | eleq1i | |- ( ran F e. _V <-> dom `' F e. _V ) |
| 66 | dfdm4 | |- dom F = ran `' F |
|
| 67 | 53 66 | eqtr3i | |- On = ran `' F |
| 68 | 67 | eleq1i | |- ( On e. _V <-> ran `' F e. _V ) |
| 69 | 63 65 68 | 3imtr4g | |- ( Fun `' F -> ( ran F e. _V -> On e. _V ) ) |
| 70 | 61 69 | mtoi | |- ( Fun `' F -> -. ran F e. _V ) |
| 71 | 60 70 | syl6 | |- ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> -. ran F e. _V ) ) |
| 72 | 37 71 | jcad | |- ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> ( ran F e. _V /\ -. ran F e. _V ) ) ) |
| 73 | 9 72 | biimtrrid | |- ( ( R Po A /\ w We A ) -> ( -. E. x e. On D = (/) -> ( ran F e. _V /\ -. ran F e. _V ) ) ) |
| 74 | 4 73 | mt3i | |- ( ( R Po A /\ w We A ) -> E. x e. On D = (/) ) |