This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zorn2lem.3 | |- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
|
| zorn2lem.4 | |- C = { z e. A | A. g e. ran f g R z } |
||
| zorn2lem.5 | |- D = { z e. A | A. g e. ( F " x ) g R z } |
||
| Assertion | zorn2lem3 | |- ( ( R Po A /\ ( x e. On /\ ( w We A /\ D =/= (/) ) ) ) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zorn2lem.3 | |- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
|
| 2 | zorn2lem.4 | |- C = { z e. A | A. g e. ran f g R z } |
|
| 3 | zorn2lem.5 | |- D = { z e. A | A. g e. ( F " x ) g R z } |
|
| 4 | 1 2 3 | zorn2lem2 | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( y e. x -> ( F ` y ) R ( F ` x ) ) ) |
| 5 | 4 | adantl | |- ( ( R Po A /\ ( x e. On /\ ( w We A /\ D =/= (/) ) ) ) -> ( y e. x -> ( F ` y ) R ( F ` x ) ) ) |
| 6 | 3 | ssrab3 | |- D C_ A |
| 7 | 1 2 3 | zorn2lem1 | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. D ) |
| 8 | 6 7 | sselid | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. A ) |
| 9 | breq1 | |- ( ( F ` x ) = ( F ` y ) -> ( ( F ` x ) R ( F ` x ) <-> ( F ` y ) R ( F ` x ) ) ) |
|
| 10 | 9 | biimprcd | |- ( ( F ` y ) R ( F ` x ) -> ( ( F ` x ) = ( F ` y ) -> ( F ` x ) R ( F ` x ) ) ) |
| 11 | poirr | |- ( ( R Po A /\ ( F ` x ) e. A ) -> -. ( F ` x ) R ( F ` x ) ) |
|
| 12 | 10 11 | nsyli | |- ( ( F ` y ) R ( F ` x ) -> ( ( R Po A /\ ( F ` x ) e. A ) -> -. ( F ` x ) = ( F ` y ) ) ) |
| 13 | 12 | com12 | |- ( ( R Po A /\ ( F ` x ) e. A ) -> ( ( F ` y ) R ( F ` x ) -> -. ( F ` x ) = ( F ` y ) ) ) |
| 14 | 8 13 | sylan2 | |- ( ( R Po A /\ ( x e. On /\ ( w We A /\ D =/= (/) ) ) ) -> ( ( F ` y ) R ( F ` x ) -> -. ( F ` x ) = ( F ` y ) ) ) |
| 15 | 5 14 | syld | |- ( ( R Po A /\ ( x e. On /\ ( w We A /\ D =/= (/) ) ) ) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) |