This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zorn2 . (Contributed by NM, 4-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zorn2lem.3 | |- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
|
| zorn2lem.4 | |- C = { z e. A | A. g e. ran f g R z } |
||
| zorn2lem.5 | |- D = { z e. A | A. g e. ( F " x ) g R z } |
||
| zorn2lem.7 | |- H = { z e. A | A. g e. ( F " y ) g R z } |
||
| Assertion | zorn2lem5 | |- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( F " x ) C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zorn2lem.3 | |- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
|
| 2 | zorn2lem.4 | |- C = { z e. A | A. g e. ran f g R z } |
|
| 3 | zorn2lem.5 | |- D = { z e. A | A. g e. ( F " x ) g R z } |
|
| 4 | zorn2lem.7 | |- H = { z e. A | A. g e. ( F " y ) g R z } |
|
| 5 | 1 | tfr1 | |- F Fn On |
| 6 | fnfun | |- ( F Fn On -> Fun F ) |
|
| 7 | 5 6 | ax-mp | |- Fun F |
| 8 | fvelima | |- ( ( Fun F /\ s e. ( F " x ) ) -> E. y e. x ( F ` y ) = s ) |
|
| 9 | 7 8 | mpan | |- ( s e. ( F " x ) -> E. y e. x ( F ` y ) = s ) |
| 10 | nfv | |- F/ y ( w We A /\ x e. On ) |
|
| 11 | nfra1 | |- F/ y A. y e. x H =/= (/) |
|
| 12 | 10 11 | nfan | |- F/ y ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) |
| 13 | nfv | |- F/ y s e. A |
|
| 14 | df-ral | |- ( A. y e. x H =/= (/) <-> A. y ( y e. x -> H =/= (/) ) ) |
|
| 15 | onelon | |- ( ( x e. On /\ y e. x ) -> y e. On ) |
|
| 16 | 4 | ssrab3 | |- H C_ A |
| 17 | 1 2 4 | zorn2lem1 | |- ( ( y e. On /\ ( w We A /\ H =/= (/) ) ) -> ( F ` y ) e. H ) |
| 18 | 16 17 | sselid | |- ( ( y e. On /\ ( w We A /\ H =/= (/) ) ) -> ( F ` y ) e. A ) |
| 19 | eleq1 | |- ( ( F ` y ) = s -> ( ( F ` y ) e. A <-> s e. A ) ) |
|
| 20 | 18 19 | imbitrid | |- ( ( F ` y ) = s -> ( ( y e. On /\ ( w We A /\ H =/= (/) ) ) -> s e. A ) ) |
| 21 | 15 20 | sylani | |- ( ( F ` y ) = s -> ( ( ( x e. On /\ y e. x ) /\ ( w We A /\ H =/= (/) ) ) -> s e. A ) ) |
| 22 | 21 | com12 | |- ( ( ( x e. On /\ y e. x ) /\ ( w We A /\ H =/= (/) ) ) -> ( ( F ` y ) = s -> s e. A ) ) |
| 23 | 22 | exp43 | |- ( x e. On -> ( y e. x -> ( w We A -> ( H =/= (/) -> ( ( F ` y ) = s -> s e. A ) ) ) ) ) |
| 24 | 23 | com3r | |- ( w We A -> ( x e. On -> ( y e. x -> ( H =/= (/) -> ( ( F ` y ) = s -> s e. A ) ) ) ) ) |
| 25 | 24 | imp | |- ( ( w We A /\ x e. On ) -> ( y e. x -> ( H =/= (/) -> ( ( F ` y ) = s -> s e. A ) ) ) ) |
| 26 | 25 | a2d | |- ( ( w We A /\ x e. On ) -> ( ( y e. x -> H =/= (/) ) -> ( y e. x -> ( ( F ` y ) = s -> s e. A ) ) ) ) |
| 27 | 26 | spsd | |- ( ( w We A /\ x e. On ) -> ( A. y ( y e. x -> H =/= (/) ) -> ( y e. x -> ( ( F ` y ) = s -> s e. A ) ) ) ) |
| 28 | 14 27 | biimtrid | |- ( ( w We A /\ x e. On ) -> ( A. y e. x H =/= (/) -> ( y e. x -> ( ( F ` y ) = s -> s e. A ) ) ) ) |
| 29 | 28 | imp | |- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( y e. x -> ( ( F ` y ) = s -> s e. A ) ) ) |
| 30 | 12 13 29 | rexlimd | |- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( E. y e. x ( F ` y ) = s -> s e. A ) ) |
| 31 | 9 30 | syl5 | |- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( s e. ( F " x ) -> s e. A ) ) |
| 32 | 31 | ssrdv | |- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( F " x ) C_ A ) |