This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | soex | |- ( ( R Or A /\ R e. V ) -> A e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( R Or A /\ R e. V ) /\ A = (/) ) -> A = (/) ) |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | 1 2 | eqeltrdi | |- ( ( ( R Or A /\ R e. V ) /\ A = (/) ) -> A e. _V ) |
| 4 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
| 5 | vsnex | |- { x } e. _V |
|
| 6 | dmexg | |- ( R e. V -> dom R e. _V ) |
|
| 7 | rnexg | |- ( R e. V -> ran R e. _V ) |
|
| 8 | unexg | |- ( ( dom R e. _V /\ ran R e. _V ) -> ( dom R u. ran R ) e. _V ) |
|
| 9 | 6 7 8 | syl2anc | |- ( R e. V -> ( dom R u. ran R ) e. _V ) |
| 10 | unexg | |- ( ( { x } e. _V /\ ( dom R u. ran R ) e. _V ) -> ( { x } u. ( dom R u. ran R ) ) e. _V ) |
|
| 11 | 5 9 10 | sylancr | |- ( R e. V -> ( { x } u. ( dom R u. ran R ) ) e. _V ) |
| 12 | 11 | ad2antlr | |- ( ( ( R Or A /\ R e. V ) /\ x e. A ) -> ( { x } u. ( dom R u. ran R ) ) e. _V ) |
| 13 | sossfld | |- ( ( R Or A /\ x e. A ) -> ( A \ { x } ) C_ ( dom R u. ran R ) ) |
|
| 14 | 13 | adantlr | |- ( ( ( R Or A /\ R e. V ) /\ x e. A ) -> ( A \ { x } ) C_ ( dom R u. ran R ) ) |
| 15 | ssundif | |- ( A C_ ( { x } u. ( dom R u. ran R ) ) <-> ( A \ { x } ) C_ ( dom R u. ran R ) ) |
|
| 16 | 14 15 | sylibr | |- ( ( ( R Or A /\ R e. V ) /\ x e. A ) -> A C_ ( { x } u. ( dom R u. ran R ) ) ) |
| 17 | 12 16 | ssexd | |- ( ( ( R Or A /\ R e. V ) /\ x e. A ) -> A e. _V ) |
| 18 | 17 | ex | |- ( ( R Or A /\ R e. V ) -> ( x e. A -> A e. _V ) ) |
| 19 | 18 | exlimdv | |- ( ( R Or A /\ R e. V ) -> ( E. x x e. A -> A e. _V ) ) |
| 20 | 19 | imp | |- ( ( ( R Or A /\ R e. V ) /\ E. x x e. A ) -> A e. _V ) |
| 21 | 4 20 | sylan2b | |- ( ( ( R Or A /\ R e. V ) /\ A =/= (/) ) -> A e. _V ) |
| 22 | 3 21 | pm2.61dane | |- ( ( R Or A /\ R e. V ) -> A e. _V ) |