This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zorn's Lemma of Monk1 p. 117. This theorem is equivalent to the Axiom of Choice and states that every partially ordered set A (with an ordering relation R ) in which every totally ordered subset has an upper bound, contains at least one maximal element. The main proof consists of lemmas zorn2lem1 through zorn2lem7 ; this final piece mainly changes bound variables to eliminate the hypotheses of zorn2lem7 . (Contributed by NM, 6-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zornn0.1 | |- A e. _V |
|
| Assertion | zorn2 | |- ( ( R Po A /\ A. w ( ( w C_ A /\ R Or w ) -> E. x e. A A. z e. w ( z R x \/ z = x ) ) ) -> E. x e. A A. y e. A -. x R y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zornn0.1 | |- A e. _V |
|
| 2 | numth3 | |- ( A e. _V -> A e. dom card ) |
|
| 3 | 1 2 | ax-mp | |- A e. dom card |
| 4 | zorn2g | |- ( ( A e. dom card /\ R Po A /\ A. w ( ( w C_ A /\ R Or w ) -> E. x e. A A. z e. w ( z R x \/ z = x ) ) ) -> E. x e. A A. y e. A -. x R y ) |
|
| 5 | 3 4 | mp3an1 | |- ( ( R Po A /\ A. w ( ( w C_ A /\ R Or w ) -> E. x e. A A. z e. w ( z R x \/ z = x ) ) ) -> E. x e. A A. y e. A -. x R y ) |