This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsval.t | |- T = ( R Xs. S ) |
|
| xpsval.x | |- X = ( Base ` R ) |
||
| xpsval.y | |- Y = ( Base ` S ) |
||
| xpsval.1 | |- ( ph -> R e. V ) |
||
| xpsval.2 | |- ( ph -> S e. W ) |
||
| Assertion | xpsbas | |- ( ph -> ( X X. Y ) = ( Base ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsval.t | |- T = ( R Xs. S ) |
|
| 2 | xpsval.x | |- X = ( Base ` R ) |
|
| 3 | xpsval.y | |- Y = ( Base ` S ) |
|
| 4 | xpsval.1 | |- ( ph -> R e. V ) |
|
| 5 | xpsval.2 | |- ( ph -> S e. W ) |
|
| 6 | eqid | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 7 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 8 | eqid | |- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
|
| 9 | 1 2 3 4 5 6 7 8 | xpsval | |- ( ph -> T = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 10 | 1 2 3 4 5 6 7 8 | xpsrnbas | |- ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 11 | 6 | xpsff1o2 | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 12 | f1ocnv | |- ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) |
|
| 13 | 11 12 | ax-mp | |- `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) |
| 14 | f1ofo | |- ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( X X. Y ) ) |
|
| 15 | 13 14 | mp1i | |- ( ph -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( X X. Y ) ) |
| 16 | ovexd | |- ( ph -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. _V ) |
|
| 17 | 9 10 15 16 | imasbas | |- ( ph -> ( X X. Y ) = ( Base ` T ) ) |