This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismgmid.b | |- B = ( Base ` G ) |
|
| ismgmid.o | |- .0. = ( 0g ` G ) |
||
| ismgmid.p | |- .+ = ( +g ` G ) |
||
| ismgmid2.u | |- ( ph -> U e. B ) |
||
| ismgmid2.l | |- ( ( ph /\ x e. B ) -> ( U .+ x ) = x ) |
||
| ismgmid2.r | |- ( ( ph /\ x e. B ) -> ( x .+ U ) = x ) |
||
| Assertion | ismgmid2 | |- ( ph -> U = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmid.b | |- B = ( Base ` G ) |
|
| 2 | ismgmid.o | |- .0. = ( 0g ` G ) |
|
| 3 | ismgmid.p | |- .+ = ( +g ` G ) |
|
| 4 | ismgmid2.u | |- ( ph -> U e. B ) |
|
| 5 | ismgmid2.l | |- ( ( ph /\ x e. B ) -> ( U .+ x ) = x ) |
|
| 6 | ismgmid2.r | |- ( ( ph /\ x e. B ) -> ( x .+ U ) = x ) |
|
| 7 | 5 6 | jca | |- ( ( ph /\ x e. B ) -> ( ( U .+ x ) = x /\ ( x .+ U ) = x ) ) |
| 8 | 7 | ralrimiva | |- ( ph -> A. x e. B ( ( U .+ x ) = x /\ ( x .+ U ) = x ) ) |
| 9 | oveq1 | |- ( e = U -> ( e .+ x ) = ( U .+ x ) ) |
|
| 10 | 9 | eqeq1d | |- ( e = U -> ( ( e .+ x ) = x <-> ( U .+ x ) = x ) ) |
| 11 | 10 | ovanraleqv | |- ( e = U -> ( A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) <-> A. x e. B ( ( U .+ x ) = x /\ ( x .+ U ) = x ) ) ) |
| 12 | 11 | rspcev | |- ( ( U e. B /\ A. x e. B ( ( U .+ x ) = x /\ ( x .+ U ) = x ) ) -> E. e e. B A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) |
| 13 | 4 8 12 | syl2anc | |- ( ph -> E. e e. B A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) |
| 14 | 1 2 3 13 | ismgmid | |- ( ph -> ( ( U e. B /\ A. x e. B ( ( U .+ x ) = x /\ ( x .+ U ) = x ) ) <-> .0. = U ) ) |
| 15 | 4 8 14 | mpbi2and | |- ( ph -> .0. = U ) |
| 16 | 15 | eqcomd | |- ( ph -> U = .0. ) |