This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the negation operation in a binary structure product. (Contributed by AV, 18-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsinv.t | |- T = ( R Xs. S ) |
|
| xpsinv.x | |- X = ( Base ` R ) |
||
| xpsinv.y | |- Y = ( Base ` S ) |
||
| xpsinv.r | |- ( ph -> R e. Grp ) |
||
| xpsinv.s | |- ( ph -> S e. Grp ) |
||
| xpsinv.a | |- ( ph -> A e. X ) |
||
| xpsinv.b | |- ( ph -> B e. Y ) |
||
| xpsinv.m | |- M = ( invg ` R ) |
||
| xpsinv.n | |- N = ( invg ` S ) |
||
| xpsinv.i | |- I = ( invg ` T ) |
||
| Assertion | xpsinv | |- ( ph -> ( I ` <. A , B >. ) = <. ( M ` A ) , ( N ` B ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsinv.t | |- T = ( R Xs. S ) |
|
| 2 | xpsinv.x | |- X = ( Base ` R ) |
|
| 3 | xpsinv.y | |- Y = ( Base ` S ) |
|
| 4 | xpsinv.r | |- ( ph -> R e. Grp ) |
|
| 5 | xpsinv.s | |- ( ph -> S e. Grp ) |
|
| 6 | xpsinv.a | |- ( ph -> A e. X ) |
|
| 7 | xpsinv.b | |- ( ph -> B e. Y ) |
|
| 8 | xpsinv.m | |- M = ( invg ` R ) |
|
| 9 | xpsinv.n | |- N = ( invg ` S ) |
|
| 10 | xpsinv.i | |- I = ( invg ` T ) |
|
| 11 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 12 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 13 | 2 11 12 8 4 6 | grplinvd | |- ( ph -> ( ( M ` A ) ( +g ` R ) A ) = ( 0g ` R ) ) |
| 14 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 15 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 16 | 3 14 15 9 5 7 | grplinvd | |- ( ph -> ( ( N ` B ) ( +g ` S ) B ) = ( 0g ` S ) ) |
| 17 | 13 16 | opeq12d | |- ( ph -> <. ( ( M ` A ) ( +g ` R ) A ) , ( ( N ` B ) ( +g ` S ) B ) >. = <. ( 0g ` R ) , ( 0g ` S ) >. ) |
| 18 | 2 8 4 6 | grpinvcld | |- ( ph -> ( M ` A ) e. X ) |
| 19 | 3 9 5 7 | grpinvcld | |- ( ph -> ( N ` B ) e. Y ) |
| 20 | 2 11 4 18 6 | grpcld | |- ( ph -> ( ( M ` A ) ( +g ` R ) A ) e. X ) |
| 21 | 3 14 5 19 7 | grpcld | |- ( ph -> ( ( N ` B ) ( +g ` S ) B ) e. Y ) |
| 22 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 23 | 1 2 3 4 5 18 19 6 7 20 21 11 14 22 | xpsadd | |- ( ph -> ( <. ( M ` A ) , ( N ` B ) >. ( +g ` T ) <. A , B >. ) = <. ( ( M ` A ) ( +g ` R ) A ) , ( ( N ` B ) ( +g ` S ) B ) >. ) |
| 24 | 4 | grpmndd | |- ( ph -> R e. Mnd ) |
| 25 | 5 | grpmndd | |- ( ph -> S e. Mnd ) |
| 26 | 1 | xpsmnd0 | |- ( ( R e. Mnd /\ S e. Mnd ) -> ( 0g ` T ) = <. ( 0g ` R ) , ( 0g ` S ) >. ) |
| 27 | 24 25 26 | syl2anc | |- ( ph -> ( 0g ` T ) = <. ( 0g ` R ) , ( 0g ` S ) >. ) |
| 28 | 17 23 27 | 3eqtr4d | |- ( ph -> ( <. ( M ` A ) , ( N ` B ) >. ( +g ` T ) <. A , B >. ) = ( 0g ` T ) ) |
| 29 | 1 | xpsgrp | |- ( ( R e. Grp /\ S e. Grp ) -> T e. Grp ) |
| 30 | 4 5 29 | syl2anc | |- ( ph -> T e. Grp ) |
| 31 | 6 7 | opelxpd | |- ( ph -> <. A , B >. e. ( X X. Y ) ) |
| 32 | 1 2 3 4 5 | xpsbas | |- ( ph -> ( X X. Y ) = ( Base ` T ) ) |
| 33 | 31 32 | eleqtrd | |- ( ph -> <. A , B >. e. ( Base ` T ) ) |
| 34 | 18 19 | opelxpd | |- ( ph -> <. ( M ` A ) , ( N ` B ) >. e. ( X X. Y ) ) |
| 35 | 34 32 | eleqtrd | |- ( ph -> <. ( M ` A ) , ( N ` B ) >. e. ( Base ` T ) ) |
| 36 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 37 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 38 | 36 22 37 10 | grpinvid2 | |- ( ( T e. Grp /\ <. A , B >. e. ( Base ` T ) /\ <. ( M ` A ) , ( N ` B ) >. e. ( Base ` T ) ) -> ( ( I ` <. A , B >. ) = <. ( M ` A ) , ( N ` B ) >. <-> ( <. ( M ` A ) , ( N ` B ) >. ( +g ` T ) <. A , B >. ) = ( 0g ` T ) ) ) |
| 39 | 30 33 35 38 | syl3anc | |- ( ph -> ( ( I ` <. A , B >. ) = <. ( M ` A ) , ( N ` B ) >. <-> ( <. ( M ` A ) , ( N ` B ) >. ( +g ` T ) <. A , B >. ) = ( 0g ` T ) ) ) |
| 40 | 28 39 | mpbird | |- ( ph -> ( I ` <. A , B >. ) = <. ( M ` A ) , ( N ` B ) >. ) |