This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of a binary product of monoids. (Contributed by AV, 25-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xpsmnd0.t | |- T = ( R Xs. S ) |
|
| Assertion | xpsmnd0 | |- ( ( R e. Mnd /\ S e. Mnd ) -> ( 0g ` T ) = <. ( 0g ` R ) , ( 0g ` S ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsmnd0.t | |- T = ( R Xs. S ) |
|
| 2 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 3 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 4 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 7 | 5 6 | mndidcl | |- ( R e. Mnd -> ( 0g ` R ) e. ( Base ` R ) ) |
| 8 | 7 | adantr | |- ( ( R e. Mnd /\ S e. Mnd ) -> ( 0g ` R ) e. ( Base ` R ) ) |
| 9 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 10 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 11 | 9 10 | mndidcl | |- ( S e. Mnd -> ( 0g ` S ) e. ( Base ` S ) ) |
| 12 | 11 | adantl | |- ( ( R e. Mnd /\ S e. Mnd ) -> ( 0g ` S ) e. ( Base ` S ) ) |
| 13 | 8 12 | opelxpd | |- ( ( R e. Mnd /\ S e. Mnd ) -> <. ( 0g ` R ) , ( 0g ` S ) >. e. ( ( Base ` R ) X. ( Base ` S ) ) ) |
| 14 | simpl | |- ( ( R e. Mnd /\ S e. Mnd ) -> R e. Mnd ) |
|
| 15 | simpr | |- ( ( R e. Mnd /\ S e. Mnd ) -> S e. Mnd ) |
|
| 16 | 1 5 9 14 15 | xpsbas | |- ( ( R e. Mnd /\ S e. Mnd ) -> ( ( Base ` R ) X. ( Base ` S ) ) = ( Base ` T ) ) |
| 17 | 13 16 | eleqtrd | |- ( ( R e. Mnd /\ S e. Mnd ) -> <. ( 0g ` R ) , ( 0g ` S ) >. e. ( Base ` T ) ) |
| 18 | 16 | eleq2d | |- ( ( R e. Mnd /\ S e. Mnd ) -> ( x e. ( ( Base ` R ) X. ( Base ` S ) ) <-> x e. ( Base ` T ) ) ) |
| 19 | elxp2 | |- ( x e. ( ( Base ` R ) X. ( Base ` S ) ) <-> E. a e. ( Base ` R ) E. b e. ( Base ` S ) x = <. a , b >. ) |
|
| 20 | 14 | adantr | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> R e. Mnd ) |
| 21 | 15 | adantr | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> S e. Mnd ) |
| 22 | 8 | adantr | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( 0g ` R ) e. ( Base ` R ) ) |
| 23 | 12 | adantr | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( 0g ` S ) e. ( Base ` S ) ) |
| 24 | simpl | |- ( ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) -> a e. ( Base ` R ) ) |
|
| 25 | 24 | adantl | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> a e. ( Base ` R ) ) |
| 26 | simpr | |- ( ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) -> b e. ( Base ` S ) ) |
|
| 27 | 26 | adantl | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> b e. ( Base ` S ) ) |
| 28 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 29 | 5 28 | mndcl | |- ( ( R e. Mnd /\ ( 0g ` R ) e. ( Base ` R ) /\ a e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) a ) e. ( Base ` R ) ) |
| 30 | 20 22 25 29 | syl3anc | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( ( 0g ` R ) ( +g ` R ) a ) e. ( Base ` R ) ) |
| 31 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 32 | 9 31 | mndcl | |- ( ( S e. Mnd /\ ( 0g ` S ) e. ( Base ` S ) /\ b e. ( Base ` S ) ) -> ( ( 0g ` S ) ( +g ` S ) b ) e. ( Base ` S ) ) |
| 33 | 21 23 27 32 | syl3anc | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( ( 0g ` S ) ( +g ` S ) b ) e. ( Base ` S ) ) |
| 34 | 1 5 9 20 21 22 23 25 27 30 33 28 31 4 | xpsadd | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) <. a , b >. ) = <. ( ( 0g ` R ) ( +g ` R ) a ) , ( ( 0g ` S ) ( +g ` S ) b ) >. ) |
| 35 | 5 28 6 | mndlid | |- ( ( R e. Mnd /\ a e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) a ) = a ) |
| 36 | 14 24 35 | syl2an | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( ( 0g ` R ) ( +g ` R ) a ) = a ) |
| 37 | 9 31 10 | mndlid | |- ( ( S e. Mnd /\ b e. ( Base ` S ) ) -> ( ( 0g ` S ) ( +g ` S ) b ) = b ) |
| 38 | 15 26 37 | syl2an | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( ( 0g ` S ) ( +g ` S ) b ) = b ) |
| 39 | 36 38 | opeq12d | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> <. ( ( 0g ` R ) ( +g ` R ) a ) , ( ( 0g ` S ) ( +g ` S ) b ) >. = <. a , b >. ) |
| 40 | 34 39 | eqtrd | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) <. a , b >. ) = <. a , b >. ) |
| 41 | oveq2 | |- ( x = <. a , b >. -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) x ) = ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) <. a , b >. ) ) |
|
| 42 | id | |- ( x = <. a , b >. -> x = <. a , b >. ) |
|
| 43 | 41 42 | eqeq12d | |- ( x = <. a , b >. -> ( ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) x ) = x <-> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) <. a , b >. ) = <. a , b >. ) ) |
| 44 | 40 43 | syl5ibrcom | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( x = <. a , b >. -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) x ) = x ) ) |
| 45 | 44 | rexlimdvva | |- ( ( R e. Mnd /\ S e. Mnd ) -> ( E. a e. ( Base ` R ) E. b e. ( Base ` S ) x = <. a , b >. -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) x ) = x ) ) |
| 46 | 19 45 | biimtrid | |- ( ( R e. Mnd /\ S e. Mnd ) -> ( x e. ( ( Base ` R ) X. ( Base ` S ) ) -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) x ) = x ) ) |
| 47 | 18 46 | sylbird | |- ( ( R e. Mnd /\ S e. Mnd ) -> ( x e. ( Base ` T ) -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) x ) = x ) ) |
| 48 | 47 | imp | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ x e. ( Base ` T ) ) -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) x ) = x ) |
| 49 | 5 28 | mndcl | |- ( ( R e. Mnd /\ a e. ( Base ` R ) /\ ( 0g ` R ) e. ( Base ` R ) ) -> ( a ( +g ` R ) ( 0g ` R ) ) e. ( Base ` R ) ) |
| 50 | 20 25 22 49 | syl3anc | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( a ( +g ` R ) ( 0g ` R ) ) e. ( Base ` R ) ) |
| 51 | 9 31 | mndcl | |- ( ( S e. Mnd /\ b e. ( Base ` S ) /\ ( 0g ` S ) e. ( Base ` S ) ) -> ( b ( +g ` S ) ( 0g ` S ) ) e. ( Base ` S ) ) |
| 52 | 21 27 23 51 | syl3anc | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( b ( +g ` S ) ( 0g ` S ) ) e. ( Base ` S ) ) |
| 53 | 1 5 9 20 21 25 27 22 23 50 52 28 31 4 | xpsadd | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( <. a , b >. ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = <. ( a ( +g ` R ) ( 0g ` R ) ) , ( b ( +g ` S ) ( 0g ` S ) ) >. ) |
| 54 | 5 28 6 | mndrid | |- ( ( R e. Mnd /\ a e. ( Base ` R ) ) -> ( a ( +g ` R ) ( 0g ` R ) ) = a ) |
| 55 | 14 24 54 | syl2an | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( a ( +g ` R ) ( 0g ` R ) ) = a ) |
| 56 | 9 31 10 | mndrid | |- ( ( S e. Mnd /\ b e. ( Base ` S ) ) -> ( b ( +g ` S ) ( 0g ` S ) ) = b ) |
| 57 | 15 26 56 | syl2an | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( b ( +g ` S ) ( 0g ` S ) ) = b ) |
| 58 | 55 57 | opeq12d | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> <. ( a ( +g ` R ) ( 0g ` R ) ) , ( b ( +g ` S ) ( 0g ` S ) ) >. = <. a , b >. ) |
| 59 | 53 58 | eqtrd | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( <. a , b >. ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = <. a , b >. ) |
| 60 | oveq1 | |- ( x = <. a , b >. -> ( x ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = ( <. a , b >. ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) ) |
|
| 61 | 60 42 | eqeq12d | |- ( x = <. a , b >. -> ( ( x ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = x <-> ( <. a , b >. ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = <. a , b >. ) ) |
| 62 | 59 61 | syl5ibrcom | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( x = <. a , b >. -> ( x ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = x ) ) |
| 63 | 62 | rexlimdvva | |- ( ( R e. Mnd /\ S e. Mnd ) -> ( E. a e. ( Base ` R ) E. b e. ( Base ` S ) x = <. a , b >. -> ( x ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = x ) ) |
| 64 | 19 63 | biimtrid | |- ( ( R e. Mnd /\ S e. Mnd ) -> ( x e. ( ( Base ` R ) X. ( Base ` S ) ) -> ( x ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = x ) ) |
| 65 | 18 64 | sylbird | |- ( ( R e. Mnd /\ S e. Mnd ) -> ( x e. ( Base ` T ) -> ( x ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = x ) ) |
| 66 | 65 | imp | |- ( ( ( R e. Mnd /\ S e. Mnd ) /\ x e. ( Base ` T ) ) -> ( x ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = x ) |
| 67 | 2 3 4 17 48 66 | ismgmid2 | |- ( ( R e. Mnd /\ S e. Mnd ) -> <. ( 0g ` R ) , ( 0g ` S ) >. = ( 0g ` T ) ) |
| 68 | 67 | eqcomd | |- ( ( R e. Mnd /\ S e. Mnd ) -> ( 0g ` T ) = <. ( 0g ` R ) , ( 0g ` S ) >. ) |