This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binary product of groups is a group. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xpsgrp.t | |- T = ( R Xs. S ) |
|
| Assertion | xpsgrp | |- ( ( R e. Grp /\ S e. Grp ) -> T e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsgrp.t | |- T = ( R Xs. S ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 4 | simpl | |- ( ( R e. Grp /\ S e. Grp ) -> R e. Grp ) |
|
| 5 | simpr | |- ( ( R e. Grp /\ S e. Grp ) -> S e. Grp ) |
|
| 6 | eqid | |- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 7 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 8 | eqid | |- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
|
| 9 | 1 2 3 4 5 6 7 8 | xpsval | |- ( ( R e. Grp /\ S e. Grp ) -> T = ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 10 | 6 | xpsff1o2 | |- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 11 | 1 2 3 4 5 6 7 8 | xpsrnbas | |- ( ( R e. Grp /\ S e. Grp ) -> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 12 | 11 | f1oeq3d | |- ( ( R e. Grp /\ S e. Grp ) -> ( ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) <-> ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) ) |
| 13 | 10 12 | mpbii | |- ( ( R e. Grp /\ S e. Grp ) -> ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 14 | f1ocnv | |- ( ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
|
| 15 | f1of1 | |- ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) -1-1-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
|
| 16 | 13 14 15 | 3syl | |- ( ( R e. Grp /\ S e. Grp ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) -1-1-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
| 17 | 2on | |- 2o e. On |
|
| 18 | 17 | a1i | |- ( ( R e. Grp /\ S e. Grp ) -> 2o e. On ) |
| 19 | fvexd | |- ( ( R e. Grp /\ S e. Grp ) -> ( Scalar ` R ) e. _V ) |
|
| 20 | xpscf | |- ( { <. (/) , R >. , <. 1o , S >. } : 2o --> Grp <-> ( R e. Grp /\ S e. Grp ) ) |
|
| 21 | 20 | biimpri | |- ( ( R e. Grp /\ S e. Grp ) -> { <. (/) , R >. , <. 1o , S >. } : 2o --> Grp ) |
| 22 | 8 18 19 21 | prdsgrpd | |- ( ( R e. Grp /\ S e. Grp ) -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. Grp ) |
| 23 | eqid | |- ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
|
| 24 | eqid | |- ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
|
| 25 | 23 24 | imasgrpf1 | |- ( ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) -1-1-> ( ( Base ` R ) X. ( Base ` S ) ) /\ ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. Grp ) -> ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. Grp ) |
| 26 | 16 22 25 | syl2anc | |- ( ( R e. Grp /\ S e. Grp ) -> ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. Grp ) |
| 27 | 9 26 | eqeltrd | |- ( ( R e. Grp /\ S e. Grp ) -> T e. Grp ) |