This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the subtraction operation in a binary structure product of groups. (Contributed by AV, 24-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsinv.t | |- T = ( R Xs. S ) |
|
| xpsinv.x | |- X = ( Base ` R ) |
||
| xpsinv.y | |- Y = ( Base ` S ) |
||
| xpsinv.r | |- ( ph -> R e. Grp ) |
||
| xpsinv.s | |- ( ph -> S e. Grp ) |
||
| xpsinv.a | |- ( ph -> A e. X ) |
||
| xpsinv.b | |- ( ph -> B e. Y ) |
||
| xpsgrpsub.c | |- ( ph -> C e. X ) |
||
| xpsgrpsub.d | |- ( ph -> D e. Y ) |
||
| xpsgrpsub.m | |- .x. = ( -g ` R ) |
||
| xpsgrpsub.n | |- .X. = ( -g ` S ) |
||
| xpsgrpsub.o | |- .- = ( -g ` T ) |
||
| Assertion | xpsgrpsub | |- ( ph -> ( <. A , B >. .- <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsinv.t | |- T = ( R Xs. S ) |
|
| 2 | xpsinv.x | |- X = ( Base ` R ) |
|
| 3 | xpsinv.y | |- Y = ( Base ` S ) |
|
| 4 | xpsinv.r | |- ( ph -> R e. Grp ) |
|
| 5 | xpsinv.s | |- ( ph -> S e. Grp ) |
|
| 6 | xpsinv.a | |- ( ph -> A e. X ) |
|
| 7 | xpsinv.b | |- ( ph -> B e. Y ) |
|
| 8 | xpsgrpsub.c | |- ( ph -> C e. X ) |
|
| 9 | xpsgrpsub.d | |- ( ph -> D e. Y ) |
|
| 10 | xpsgrpsub.m | |- .x. = ( -g ` R ) |
|
| 11 | xpsgrpsub.n | |- .X. = ( -g ` S ) |
|
| 12 | xpsgrpsub.o | |- .- = ( -g ` T ) |
|
| 13 | 2 10 | grpsubcl | |- ( ( R e. Grp /\ A e. X /\ C e. X ) -> ( A .x. C ) e. X ) |
| 14 | 4 6 8 13 | syl3anc | |- ( ph -> ( A .x. C ) e. X ) |
| 15 | 3 11 | grpsubcl | |- ( ( S e. Grp /\ B e. Y /\ D e. Y ) -> ( B .X. D ) e. Y ) |
| 16 | 5 7 9 15 | syl3anc | |- ( ph -> ( B .X. D ) e. Y ) |
| 17 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 18 | 2 17 4 14 8 | grpcld | |- ( ph -> ( ( A .x. C ) ( +g ` R ) C ) e. X ) |
| 19 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 20 | 3 19 5 16 9 | grpcld | |- ( ph -> ( ( B .X. D ) ( +g ` S ) D ) e. Y ) |
| 21 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 22 | 1 2 3 4 5 14 16 8 9 18 20 17 19 21 | xpsadd | |- ( ph -> ( <. ( A .x. C ) , ( B .X. D ) >. ( +g ` T ) <. C , D >. ) = <. ( ( A .x. C ) ( +g ` R ) C ) , ( ( B .X. D ) ( +g ` S ) D ) >. ) |
| 23 | 2 17 10 | grpnpcan | |- ( ( R e. Grp /\ A e. X /\ C e. X ) -> ( ( A .x. C ) ( +g ` R ) C ) = A ) |
| 24 | 4 6 8 23 | syl3anc | |- ( ph -> ( ( A .x. C ) ( +g ` R ) C ) = A ) |
| 25 | 3 19 11 | grpnpcan | |- ( ( S e. Grp /\ B e. Y /\ D e. Y ) -> ( ( B .X. D ) ( +g ` S ) D ) = B ) |
| 26 | 5 7 9 25 | syl3anc | |- ( ph -> ( ( B .X. D ) ( +g ` S ) D ) = B ) |
| 27 | 24 26 | opeq12d | |- ( ph -> <. ( ( A .x. C ) ( +g ` R ) C ) , ( ( B .X. D ) ( +g ` S ) D ) >. = <. A , B >. ) |
| 28 | 22 27 | eqtrd | |- ( ph -> ( <. ( A .x. C ) , ( B .X. D ) >. ( +g ` T ) <. C , D >. ) = <. A , B >. ) |
| 29 | 1 | xpsgrp | |- ( ( R e. Grp /\ S e. Grp ) -> T e. Grp ) |
| 30 | 4 5 29 | syl2anc | |- ( ph -> T e. Grp ) |
| 31 | 6 7 | opelxpd | |- ( ph -> <. A , B >. e. ( X X. Y ) ) |
| 32 | 1 2 3 4 5 | xpsbas | |- ( ph -> ( X X. Y ) = ( Base ` T ) ) |
| 33 | 31 32 | eleqtrd | |- ( ph -> <. A , B >. e. ( Base ` T ) ) |
| 34 | 8 9 | opelxpd | |- ( ph -> <. C , D >. e. ( X X. Y ) ) |
| 35 | 34 32 | eleqtrd | |- ( ph -> <. C , D >. e. ( Base ` T ) ) |
| 36 | 14 16 | opelxpd | |- ( ph -> <. ( A .x. C ) , ( B .X. D ) >. e. ( X X. Y ) ) |
| 37 | 36 32 | eleqtrd | |- ( ph -> <. ( A .x. C ) , ( B .X. D ) >. e. ( Base ` T ) ) |
| 38 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 39 | 38 21 12 | grpsubadd | |- ( ( T e. Grp /\ ( <. A , B >. e. ( Base ` T ) /\ <. C , D >. e. ( Base ` T ) /\ <. ( A .x. C ) , ( B .X. D ) >. e. ( Base ` T ) ) ) -> ( ( <. A , B >. .- <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. <-> ( <. ( A .x. C ) , ( B .X. D ) >. ( +g ` T ) <. C , D >. ) = <. A , B >. ) ) |
| 40 | 30 33 35 37 39 | syl13anc | |- ( ph -> ( ( <. A , B >. .- <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. <-> ( <. ( A .x. C ) , ( B .X. D ) >. ( +g ` T ) <. C , D >. ) = <. A , B >. ) ) |
| 41 | 28 40 | mpbird | |- ( ph -> ( <. A , B >. .- <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. ) |