This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinv.b | |- B = ( Base ` G ) |
|
| grpinv.p | |- .+ = ( +g ` G ) |
||
| grpinv.u | |- .0. = ( 0g ` G ) |
||
| grpinv.n | |- N = ( invg ` G ) |
||
| Assertion | grpinvid2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( N ` X ) = Y <-> ( Y .+ X ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b | |- B = ( Base ` G ) |
|
| 2 | grpinv.p | |- .+ = ( +g ` G ) |
|
| 3 | grpinv.u | |- .0. = ( 0g ` G ) |
|
| 4 | grpinv.n | |- N = ( invg ` G ) |
|
| 5 | oveq1 | |- ( ( N ` X ) = Y -> ( ( N ` X ) .+ X ) = ( Y .+ X ) ) |
|
| 6 | 5 | adantl | |- ( ( ( G e. Grp /\ X e. B /\ Y e. B ) /\ ( N ` X ) = Y ) -> ( ( N ` X ) .+ X ) = ( Y .+ X ) ) |
| 7 | 1 2 3 4 | grplinv | |- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) .+ X ) = .0. ) |
| 8 | 7 | 3adant3 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( N ` X ) .+ X ) = .0. ) |
| 9 | 8 | adantr | |- ( ( ( G e. Grp /\ X e. B /\ Y e. B ) /\ ( N ` X ) = Y ) -> ( ( N ` X ) .+ X ) = .0. ) |
| 10 | 6 9 | eqtr3d | |- ( ( ( G e. Grp /\ X e. B /\ Y e. B ) /\ ( N ` X ) = Y ) -> ( Y .+ X ) = .0. ) |
| 11 | 1 4 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 12 | 1 2 3 | grplid | |- ( ( G e. Grp /\ ( N ` X ) e. B ) -> ( .0. .+ ( N ` X ) ) = ( N ` X ) ) |
| 13 | 11 12 | syldan | |- ( ( G e. Grp /\ X e. B ) -> ( .0. .+ ( N ` X ) ) = ( N ` X ) ) |
| 14 | 13 | 3adant3 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( .0. .+ ( N ` X ) ) = ( N ` X ) ) |
| 15 | 14 | eqcomd | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( N ` X ) = ( .0. .+ ( N ` X ) ) ) |
| 16 | 15 | adantr | |- ( ( ( G e. Grp /\ X e. B /\ Y e. B ) /\ ( Y .+ X ) = .0. ) -> ( N ` X ) = ( .0. .+ ( N ` X ) ) ) |
| 17 | oveq1 | |- ( ( Y .+ X ) = .0. -> ( ( Y .+ X ) .+ ( N ` X ) ) = ( .0. .+ ( N ` X ) ) ) |
|
| 18 | 17 | adantl | |- ( ( ( G e. Grp /\ X e. B /\ Y e. B ) /\ ( Y .+ X ) = .0. ) -> ( ( Y .+ X ) .+ ( N ` X ) ) = ( .0. .+ ( N ` X ) ) ) |
| 19 | simprr | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> Y e. B ) |
|
| 20 | simprl | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> X e. B ) |
|
| 21 | 11 | adantrr | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> ( N ` X ) e. B ) |
| 22 | 19 20 21 | 3jca | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> ( Y e. B /\ X e. B /\ ( N ` X ) e. B ) ) |
| 23 | 1 2 | grpass | |- ( ( G e. Grp /\ ( Y e. B /\ X e. B /\ ( N ` X ) e. B ) ) -> ( ( Y .+ X ) .+ ( N ` X ) ) = ( Y .+ ( X .+ ( N ` X ) ) ) ) |
| 24 | 22 23 | syldan | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> ( ( Y .+ X ) .+ ( N ` X ) ) = ( Y .+ ( X .+ ( N ` X ) ) ) ) |
| 25 | 24 | 3impb | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( Y .+ X ) .+ ( N ` X ) ) = ( Y .+ ( X .+ ( N ` X ) ) ) ) |
| 26 | 1 2 3 4 | grprinv | |- ( ( G e. Grp /\ X e. B ) -> ( X .+ ( N ` X ) ) = .0. ) |
| 27 | 26 | oveq2d | |- ( ( G e. Grp /\ X e. B ) -> ( Y .+ ( X .+ ( N ` X ) ) ) = ( Y .+ .0. ) ) |
| 28 | 27 | 3adant3 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( Y .+ ( X .+ ( N ` X ) ) ) = ( Y .+ .0. ) ) |
| 29 | 1 2 3 | grprid | |- ( ( G e. Grp /\ Y e. B ) -> ( Y .+ .0. ) = Y ) |
| 30 | 29 | 3adant2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( Y .+ .0. ) = Y ) |
| 31 | 25 28 30 | 3eqtrd | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( Y .+ X ) .+ ( N ` X ) ) = Y ) |
| 32 | 31 | adantr | |- ( ( ( G e. Grp /\ X e. B /\ Y e. B ) /\ ( Y .+ X ) = .0. ) -> ( ( Y .+ X ) .+ ( N ` X ) ) = Y ) |
| 33 | 16 18 32 | 3eqtr2d | |- ( ( ( G e. Grp /\ X e. B /\ Y e. B ) /\ ( Y .+ X ) = .0. ) -> ( N ` X ) = Y ) |
| 34 | 10 33 | impbida | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( N ` X ) = Y <-> ( Y .+ X ) = .0. ) ) |