This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the negation operation in a binary structure product. (Contributed by AV, 18-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsinv.t | ⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) | |
| xpsinv.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | ||
| xpsinv.y | ⊢ 𝑌 = ( Base ‘ 𝑆 ) | ||
| xpsinv.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | ||
| xpsinv.s | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) | ||
| xpsinv.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| xpsinv.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | ||
| xpsinv.m | ⊢ 𝑀 = ( invg ‘ 𝑅 ) | ||
| xpsinv.n | ⊢ 𝑁 = ( invg ‘ 𝑆 ) | ||
| xpsinv.i | ⊢ 𝐼 = ( invg ‘ 𝑇 ) | ||
| Assertion | xpsinv | ⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝐴 , 𝐵 〉 ) = 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsinv.t | ⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) | |
| 2 | xpsinv.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| 3 | xpsinv.y | ⊢ 𝑌 = ( Base ‘ 𝑆 ) | |
| 4 | xpsinv.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | |
| 5 | xpsinv.s | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) | |
| 6 | xpsinv.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 7 | xpsinv.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | |
| 8 | xpsinv.m | ⊢ 𝑀 = ( invg ‘ 𝑅 ) | |
| 9 | xpsinv.n | ⊢ 𝑁 = ( invg ‘ 𝑆 ) | |
| 10 | xpsinv.i | ⊢ 𝐼 = ( invg ‘ 𝑇 ) | |
| 11 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 13 | 2 11 12 8 4 6 | grplinvd | ⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) ( +g ‘ 𝑅 ) 𝐴 ) = ( 0g ‘ 𝑅 ) ) |
| 14 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 15 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 16 | 3 14 15 9 5 7 | grplinvd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐵 ) ( +g ‘ 𝑆 ) 𝐵 ) = ( 0g ‘ 𝑆 ) ) |
| 17 | 13 16 | opeq12d | ⊢ ( 𝜑 → 〈 ( ( 𝑀 ‘ 𝐴 ) ( +g ‘ 𝑅 ) 𝐴 ) , ( ( 𝑁 ‘ 𝐵 ) ( +g ‘ 𝑆 ) 𝐵 ) 〉 = 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) |
| 18 | 2 8 4 6 | grpinvcld | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ 𝑋 ) |
| 19 | 3 9 5 7 | grpinvcld | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝐵 ) ∈ 𝑌 ) |
| 20 | 2 11 4 18 6 | grpcld | ⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) ( +g ‘ 𝑅 ) 𝐴 ) ∈ 𝑋 ) |
| 21 | 3 14 5 19 7 | grpcld | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐵 ) ( +g ‘ 𝑆 ) 𝐵 ) ∈ 𝑌 ) |
| 22 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 23 | 1 2 3 4 5 18 19 6 7 20 21 11 14 22 | xpsadd | ⊢ ( 𝜑 → ( 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐴 , 𝐵 〉 ) = 〈 ( ( 𝑀 ‘ 𝐴 ) ( +g ‘ 𝑅 ) 𝐴 ) , ( ( 𝑁 ‘ 𝐵 ) ( +g ‘ 𝑆 ) 𝐵 ) 〉 ) |
| 24 | 4 | grpmndd | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 25 | 5 | grpmndd | ⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
| 26 | 1 | xpsmnd0 | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 0g ‘ 𝑇 ) = 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) |
| 27 | 24 25 26 | syl2anc | ⊢ ( 𝜑 → ( 0g ‘ 𝑇 ) = 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) |
| 28 | 17 23 27 | 3eqtr4d | ⊢ ( 𝜑 → ( 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐴 , 𝐵 〉 ) = ( 0g ‘ 𝑇 ) ) |
| 29 | 1 | xpsgrp | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) → 𝑇 ∈ Grp ) |
| 30 | 4 5 29 | syl2anc | ⊢ ( 𝜑 → 𝑇 ∈ Grp ) |
| 31 | 6 7 | opelxpd | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 32 | 1 2 3 4 5 | xpsbas | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( Base ‘ 𝑇 ) ) |
| 33 | 31 32 | eleqtrd | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( Base ‘ 𝑇 ) ) |
| 34 | 18 19 | opelxpd | ⊢ ( 𝜑 → 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 35 | 34 32 | eleqtrd | ⊢ ( 𝜑 → 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ∈ ( Base ‘ 𝑇 ) ) |
| 36 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 37 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 38 | 36 22 37 10 | grpinvid2 | ⊢ ( ( 𝑇 ∈ Grp ∧ 〈 𝐴 , 𝐵 〉 ∈ ( Base ‘ 𝑇 ) ∧ 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ∈ ( Base ‘ 𝑇 ) ) → ( ( 𝐼 ‘ 〈 𝐴 , 𝐵 〉 ) = 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ↔ ( 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐴 , 𝐵 〉 ) = ( 0g ‘ 𝑇 ) ) ) |
| 39 | 30 33 35 38 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝐴 , 𝐵 〉 ) = 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ↔ ( 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐴 , 𝐵 〉 ) = ( 0g ‘ 𝑇 ) ) ) |
| 40 | 28 39 | mpbird | ⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝐴 , 𝐵 〉 ) = 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ) |