This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the addition operation in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsval.t | |- T = ( R Xs. S ) |
|
| xpsval.x | |- X = ( Base ` R ) |
||
| xpsval.y | |- Y = ( Base ` S ) |
||
| xpsval.1 | |- ( ph -> R e. V ) |
||
| xpsval.2 | |- ( ph -> S e. W ) |
||
| xpsadd.3 | |- ( ph -> A e. X ) |
||
| xpsadd.4 | |- ( ph -> B e. Y ) |
||
| xpsadd.5 | |- ( ph -> C e. X ) |
||
| xpsadd.6 | |- ( ph -> D e. Y ) |
||
| xpsadd.7 | |- ( ph -> ( A .x. C ) e. X ) |
||
| xpsadd.8 | |- ( ph -> ( B .X. D ) e. Y ) |
||
| xpsadd.m | |- .x. = ( +g ` R ) |
||
| xpsadd.n | |- .X. = ( +g ` S ) |
||
| xpsadd.p | |- .xb = ( +g ` T ) |
||
| Assertion | xpsadd | |- ( ph -> ( <. A , B >. .xb <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsval.t | |- T = ( R Xs. S ) |
|
| 2 | xpsval.x | |- X = ( Base ` R ) |
|
| 3 | xpsval.y | |- Y = ( Base ` S ) |
|
| 4 | xpsval.1 | |- ( ph -> R e. V ) |
|
| 5 | xpsval.2 | |- ( ph -> S e. W ) |
|
| 6 | xpsadd.3 | |- ( ph -> A e. X ) |
|
| 7 | xpsadd.4 | |- ( ph -> B e. Y ) |
|
| 8 | xpsadd.5 | |- ( ph -> C e. X ) |
|
| 9 | xpsadd.6 | |- ( ph -> D e. Y ) |
|
| 10 | xpsadd.7 | |- ( ph -> ( A .x. C ) e. X ) |
|
| 11 | xpsadd.8 | |- ( ph -> ( B .X. D ) e. Y ) |
|
| 12 | xpsadd.m | |- .x. = ( +g ` R ) |
|
| 13 | xpsadd.n | |- .X. = ( +g ` S ) |
|
| 14 | xpsadd.p | |- .xb = ( +g ` T ) |
|
| 15 | eqid | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 16 | eqid | |- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
|
| 17 | 15 | xpsff1o2 | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 18 | f1ocnv | |- ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) |
|
| 19 | 17 18 | mp1i | |- ( ph -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) |
| 20 | f1ofo | |- ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( X X. Y ) ) |
|
| 21 | 19 20 | syl | |- ( ph -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( X X. Y ) ) |
| 22 | 19 | f1ocpbl | |- ( ( ph /\ ( a e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ b e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) /\ ( c e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ d e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) -> ( ( ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` a ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` c ) /\ ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` b ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` d ) ) -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` ( a ( +g ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) b ) ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` ( c ( +g ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) d ) ) ) ) |
| 23 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 24 | 1 2 3 4 5 15 23 16 | xpsval | |- ( ph -> T = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 25 | 1 2 3 4 5 15 23 16 | xpsrnbas | |- ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 26 | ovexd | |- ( ph -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. _V ) |
|
| 27 | eqid | |- ( +g ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( +g ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
|
| 28 | 21 22 24 25 26 27 14 | imasaddval | |- ( ( ph /\ { <. (/) , A >. , <. 1o , B >. } e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ { <. (/) , C >. , <. 1o , D >. } e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) -> ( ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , A >. , <. 1o , B >. } ) .xb ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , C >. , <. 1o , D >. } ) ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` ( { <. (/) , A >. , <. 1o , B >. } ( +g ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , C >. , <. 1o , D >. } ) ) ) |
| 29 | eqid | |- ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
|
| 30 | fvexd | |- ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) /\ { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) -> ( Scalar ` R ) e. _V ) |
|
| 31 | 2on | |- 2o e. On |
|
| 32 | 31 | a1i | |- ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) /\ { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) -> 2o e. On ) |
| 33 | simp1 | |- ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) /\ { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
|
| 34 | simp2 | |- ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) /\ { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) -> { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
|
| 35 | simp3 | |- ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) /\ { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) -> { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
|
| 36 | 16 29 30 32 33 34 35 27 | prdsplusgval | |- ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) /\ { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) -> ( { <. (/) , A >. , <. 1o , B >. } ( +g ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , C >. , <. 1o , D >. } ) = ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( +g ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) ) |
| 37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 28 36 | xpsaddlem | |- ( ph -> ( <. A , B >. .xb <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. ) |