This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence classes under the finite separation equivalence relation are infinity balls. Thus, by erdisj , infinity balls are either identical or disjoint, quite unlike the usual situation with Euclidean balls which admit many kinds of overlap. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xmeter.1 | |- .~ = ( `' D " RR ) |
|
| Assertion | xmetec | |- ( ( D e. ( *Met ` X ) /\ P e. X ) -> [ P ] .~ = ( P ( ball ` D ) +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmeter.1 | |- .~ = ( `' D " RR ) |
|
| 2 | 1 | xmeterval | |- ( D e. ( *Met ` X ) -> ( P .~ x <-> ( P e. X /\ x e. X /\ ( P D x ) e. RR ) ) ) |
| 3 | 3anass | |- ( ( P e. X /\ x e. X /\ ( P D x ) e. RR ) <-> ( P e. X /\ ( x e. X /\ ( P D x ) e. RR ) ) ) |
|
| 4 | 3 | baib | |- ( P e. X -> ( ( P e. X /\ x e. X /\ ( P D x ) e. RR ) <-> ( x e. X /\ ( P D x ) e. RR ) ) ) |
| 5 | 2 4 | sylan9bb | |- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( P .~ x <-> ( x e. X /\ ( P D x ) e. RR ) ) ) |
| 6 | vex | |- x e. _V |
|
| 7 | 6 | a1i | |- ( D e. ( *Met ` X ) -> x e. _V ) |
| 8 | elecg | |- ( ( x e. _V /\ P e. X ) -> ( x e. [ P ] .~ <-> P .~ x ) ) |
|
| 9 | 7 8 | sylan | |- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( x e. [ P ] .~ <-> P .~ x ) ) |
| 10 | xblpnf | |- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( x e. ( P ( ball ` D ) +oo ) <-> ( x e. X /\ ( P D x ) e. RR ) ) ) |
|
| 11 | 5 9 10 | 3bitr4d | |- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( x e. [ P ] .~ <-> x e. ( P ( ball ` D ) +oo ) ) ) |
| 12 | 11 | eqrdv | |- ( ( D e. ( *Met ` X ) /\ P e. X ) -> [ P ] .~ = ( P ( ball ` D ) +oo ) ) |