This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xmeter.1 | |- .~ = ( `' D " RR ) |
|
| Assertion | xmeterval | |- ( D e. ( *Met ` X ) -> ( A .~ B <-> ( A e. X /\ B e. X /\ ( A D B ) e. RR ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmeter.1 | |- .~ = ( `' D " RR ) |
|
| 2 | xmetf | |- ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 3 | ffn | |- ( D : ( X X. X ) --> RR* -> D Fn ( X X. X ) ) |
|
| 4 | elpreima | |- ( D Fn ( X X. X ) -> ( <. A , B >. e. ( `' D " RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) ) |
|
| 5 | 2 3 4 | 3syl | |- ( D e. ( *Met ` X ) -> ( <. A , B >. e. ( `' D " RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) ) |
| 6 | 1 | breqi | |- ( A .~ B <-> A ( `' D " RR ) B ) |
| 7 | df-br | |- ( A ( `' D " RR ) B <-> <. A , B >. e. ( `' D " RR ) ) |
|
| 8 | 6 7 | bitri | |- ( A .~ B <-> <. A , B >. e. ( `' D " RR ) ) |
| 9 | df-3an | |- ( ( A e. X /\ B e. X /\ ( A D B ) e. RR ) <-> ( ( A e. X /\ B e. X ) /\ ( A D B ) e. RR ) ) |
|
| 10 | opelxp | |- ( <. A , B >. e. ( X X. X ) <-> ( A e. X /\ B e. X ) ) |
|
| 11 | 10 | bicomi | |- ( ( A e. X /\ B e. X ) <-> <. A , B >. e. ( X X. X ) ) |
| 12 | df-ov | |- ( A D B ) = ( D ` <. A , B >. ) |
|
| 13 | 12 | eleq1i | |- ( ( A D B ) e. RR <-> ( D ` <. A , B >. ) e. RR ) |
| 14 | 11 13 | anbi12i | |- ( ( ( A e. X /\ B e. X ) /\ ( A D B ) e. RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) |
| 15 | 9 14 | bitri | |- ( ( A e. X /\ B e. X /\ ( A D B ) e. RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) |
| 16 | 5 8 15 | 3bitr4g | |- ( D e. ( *Met ` X ) -> ( A .~ B <-> ( A e. X /\ B e. X /\ ( A D B ) e. RR ) ) ) |