This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Real closure of an extended metric value that is upper bounded by a real. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmetlecl | |- ( ( D e. ( *Met ` X ) /\ ( A e. X /\ B e. X ) /\ ( C e. RR /\ ( A D B ) <_ C ) ) -> ( A D B ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) e. RR* ) |
|
| 2 | 1 | 3expb | |- ( ( D e. ( *Met ` X ) /\ ( A e. X /\ B e. X ) ) -> ( A D B ) e. RR* ) |
| 3 | 2 | 3adant3 | |- ( ( D e. ( *Met ` X ) /\ ( A e. X /\ B e. X ) /\ ( C e. RR /\ ( A D B ) <_ C ) ) -> ( A D B ) e. RR* ) |
| 4 | simp3l | |- ( ( D e. ( *Met ` X ) /\ ( A e. X /\ B e. X ) /\ ( C e. RR /\ ( A D B ) <_ C ) ) -> C e. RR ) |
|
| 5 | xmetge0 | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> 0 <_ ( A D B ) ) |
|
| 6 | 5 | 3expb | |- ( ( D e. ( *Met ` X ) /\ ( A e. X /\ B e. X ) ) -> 0 <_ ( A D B ) ) |
| 7 | 6 | 3adant3 | |- ( ( D e. ( *Met ` X ) /\ ( A e. X /\ B e. X ) /\ ( C e. RR /\ ( A D B ) <_ C ) ) -> 0 <_ ( A D B ) ) |
| 8 | simp3r | |- ( ( D e. ( *Met ` X ) /\ ( A e. X /\ B e. X ) /\ ( C e. RR /\ ( A D B ) <_ C ) ) -> ( A D B ) <_ C ) |
|
| 9 | xrrege0 | |- ( ( ( ( A D B ) e. RR* /\ C e. RR ) /\ ( 0 <_ ( A D B ) /\ ( A D B ) <_ C ) ) -> ( A D B ) e. RR ) |
|
| 10 | 3 4 7 8 9 | syl22anc | |- ( ( D e. ( *Met ` X ) /\ ( A e. X /\ B e. X ) /\ ( C e. RR /\ ( A D B ) <_ C ) ) -> ( A D B ) e. RR ) |