This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of mulrid . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulrid | |- ( A e. RR* -> ( A *e 1 ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 2 | 1re | |- 1 e. RR |
|
| 3 | rexmul | |- ( ( A e. RR /\ 1 e. RR ) -> ( A *e 1 ) = ( A x. 1 ) ) |
|
| 4 | 2 3 | mpan2 | |- ( A e. RR -> ( A *e 1 ) = ( A x. 1 ) ) |
| 5 | ax-1rid | |- ( A e. RR -> ( A x. 1 ) = A ) |
|
| 6 | 4 5 | eqtrd | |- ( A e. RR -> ( A *e 1 ) = A ) |
| 7 | 1xr | |- 1 e. RR* |
|
| 8 | 0lt1 | |- 0 < 1 |
|
| 9 | xmulpnf2 | |- ( ( 1 e. RR* /\ 0 < 1 ) -> ( +oo *e 1 ) = +oo ) |
|
| 10 | 7 8 9 | mp2an | |- ( +oo *e 1 ) = +oo |
| 11 | oveq1 | |- ( A = +oo -> ( A *e 1 ) = ( +oo *e 1 ) ) |
|
| 12 | id | |- ( A = +oo -> A = +oo ) |
|
| 13 | 10 11 12 | 3eqtr4a | |- ( A = +oo -> ( A *e 1 ) = A ) |
| 14 | xmulmnf2 | |- ( ( 1 e. RR* /\ 0 < 1 ) -> ( -oo *e 1 ) = -oo ) |
|
| 15 | 7 8 14 | mp2an | |- ( -oo *e 1 ) = -oo |
| 16 | oveq1 | |- ( A = -oo -> ( A *e 1 ) = ( -oo *e 1 ) ) |
|
| 17 | id | |- ( A = -oo -> A = -oo ) |
|
| 18 | 15 16 17 | 3eqtr4a | |- ( A = -oo -> ( A *e 1 ) = A ) |
| 19 | 6 13 18 | 3jaoi | |- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( A *e 1 ) = A ) |
| 20 | 1 19 | sylbi | |- ( A e. RR* -> ( A *e 1 ) = A ) |