This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of lemul2 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xlemul2 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A <_ B <-> ( C *e A ) <_ ( C *e B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlemul1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A <_ B <-> ( A *e C ) <_ ( B *e C ) ) ) |
|
| 2 | simp1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> A e. RR* ) |
|
| 3 | rpxr | |- ( C e. RR+ -> C e. RR* ) |
|
| 4 | 3 | 3ad2ant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> C e. RR* ) |
| 5 | xmulcom | |- ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) = ( C *e A ) ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A *e C ) = ( C *e A ) ) |
| 7 | simp2 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> B e. RR* ) |
|
| 8 | xmulcom | |- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) = ( C *e B ) ) |
|
| 9 | 7 4 8 | syl2anc | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( B *e C ) = ( C *e B ) ) |
| 10 | 6 9 | breq12d | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( ( A *e C ) <_ ( B *e C ) <-> ( C *e A ) <_ ( C *e B ) ) ) |
| 11 | 1 10 | bitrd | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR+ ) -> ( A <_ B <-> ( C *e A ) <_ ( C *e B ) ) ) |