This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive property for extended real addition and multiplication. Like xaddass , this has an unusual domain of correctness due to counterexamples like ( +oo x. ( 2 - 1 ) ) = -oo =/= ( ( +oo x. 2 ) - ( +oo x. 1 ) ) = ( +oo - +oo ) = 0 . In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xadddi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) = ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xadddilem | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 < 𝐴 ) → ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) = ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ) | |
| 2 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → 𝐵 ∈ ℝ* ) | |
| 3 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → 𝐶 ∈ ℝ* ) | |
| 4 | xaddcl | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 +𝑒 𝐶 ) ∈ ℝ* ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → ( 𝐵 +𝑒 𝐶 ) ∈ ℝ* ) |
| 6 | xmul02 | ⊢ ( ( 𝐵 +𝑒 𝐶 ) ∈ ℝ* → ( 0 ·e ( 𝐵 +𝑒 𝐶 ) ) = 0 ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → ( 0 ·e ( 𝐵 +𝑒 𝐶 ) ) = 0 ) |
| 8 | 0xr | ⊢ 0 ∈ ℝ* | |
| 9 | xaddrid | ⊢ ( 0 ∈ ℝ* → ( 0 +𝑒 0 ) = 0 ) | |
| 10 | 8 9 | ax-mp | ⊢ ( 0 +𝑒 0 ) = 0 |
| 11 | 7 10 | eqtr4di | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → ( 0 ·e ( 𝐵 +𝑒 𝐶 ) ) = ( 0 +𝑒 0 ) ) |
| 12 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → 0 = 𝐴 ) | |
| 13 | 12 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → ( 0 ·e ( 𝐵 +𝑒 𝐶 ) ) = ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) ) |
| 14 | xmul02 | ⊢ ( 𝐵 ∈ ℝ* → ( 0 ·e 𝐵 ) = 0 ) | |
| 15 | 2 14 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → ( 0 ·e 𝐵 ) = 0 ) |
| 16 | 12 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → ( 0 ·e 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) |
| 17 | 15 16 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → 0 = ( 𝐴 ·e 𝐵 ) ) |
| 18 | xmul02 | ⊢ ( 𝐶 ∈ ℝ* → ( 0 ·e 𝐶 ) = 0 ) | |
| 19 | 3 18 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → ( 0 ·e 𝐶 ) = 0 ) |
| 20 | 12 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → ( 0 ·e 𝐶 ) = ( 𝐴 ·e 𝐶 ) ) |
| 21 | 19 20 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → 0 = ( 𝐴 ·e 𝐶 ) ) |
| 22 | 17 21 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → ( 0 +𝑒 0 ) = ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ) |
| 23 | 11 13 22 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 = 𝐴 ) → ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) = ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ) |
| 24 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐴 ∈ ℝ ) | |
| 25 | 24 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ ) |
| 26 | rexneg | ⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) | |
| 27 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 28 | 26 27 | eqeltrd | ⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 ∈ ℝ ) |
| 29 | 25 28 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → -𝑒 𝐴 ∈ ℝ ) |
| 30 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → 𝐵 ∈ ℝ* ) | |
| 31 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → 𝐶 ∈ ℝ* ) | |
| 32 | 24 | rexrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) |
| 33 | xlt0neg1 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 < 0 ↔ 0 < -𝑒 𝐴 ) ) | |
| 34 | 32 33 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 < 0 ↔ 0 < -𝑒 𝐴 ) ) |
| 35 | 34 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → 0 < -𝑒 𝐴 ) |
| 36 | xadddilem | ⊢ ( ( ( -𝑒 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 0 < -𝑒 𝐴 ) → ( -𝑒 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) = ( ( -𝑒 𝐴 ·e 𝐵 ) +𝑒 ( -𝑒 𝐴 ·e 𝐶 ) ) ) | |
| 37 | 29 30 31 35 36 | syl31anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → ( -𝑒 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) = ( ( -𝑒 𝐴 ·e 𝐵 ) +𝑒 ( -𝑒 𝐴 ·e 𝐶 ) ) ) |
| 38 | 32 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ* ) |
| 39 | 30 31 4 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → ( 𝐵 +𝑒 𝐶 ) ∈ ℝ* ) |
| 40 | xmulneg1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 +𝑒 𝐶 ) ∈ ℝ* ) → ( -𝑒 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) = -𝑒 ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) ) | |
| 41 | 38 39 40 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → ( -𝑒 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) = -𝑒 ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) ) |
| 42 | xmulneg1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐴 ·e 𝐵 ) ) | |
| 43 | 38 30 42 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → ( -𝑒 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐴 ·e 𝐵 ) ) |
| 44 | xmulneg1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐶 ) = -𝑒 ( 𝐴 ·e 𝐶 ) ) | |
| 45 | 38 31 44 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → ( -𝑒 𝐴 ·e 𝐶 ) = -𝑒 ( 𝐴 ·e 𝐶 ) ) |
| 46 | 43 45 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → ( ( -𝑒 𝐴 ·e 𝐵 ) +𝑒 ( -𝑒 𝐴 ·e 𝐶 ) ) = ( -𝑒 ( 𝐴 ·e 𝐵 ) +𝑒 -𝑒 ( 𝐴 ·e 𝐶 ) ) ) |
| 47 | xmulcl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) | |
| 48 | 38 30 47 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) |
| 49 | xmulcl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) | |
| 50 | 38 31 49 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) |
| 51 | xnegdi | ⊢ ( ( ( 𝐴 ·e 𝐵 ) ∈ ℝ* ∧ ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) → -𝑒 ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) = ( -𝑒 ( 𝐴 ·e 𝐵 ) +𝑒 -𝑒 ( 𝐴 ·e 𝐶 ) ) ) | |
| 52 | 48 50 51 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → -𝑒 ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) = ( -𝑒 ( 𝐴 ·e 𝐵 ) +𝑒 -𝑒 ( 𝐴 ·e 𝐶 ) ) ) |
| 53 | 46 52 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → ( ( -𝑒 𝐴 ·e 𝐵 ) +𝑒 ( -𝑒 𝐴 ·e 𝐶 ) ) = -𝑒 ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ) |
| 54 | 37 41 53 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → -𝑒 ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) = -𝑒 ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ) |
| 55 | xmulcl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 +𝑒 𝐶 ) ∈ ℝ* ) → ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) ∈ ℝ* ) | |
| 56 | 38 39 55 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) ∈ ℝ* ) |
| 57 | xaddcl | ⊢ ( ( ( 𝐴 ·e 𝐵 ) ∈ ℝ* ∧ ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) → ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ∈ ℝ* ) | |
| 58 | 48 50 57 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ∈ ℝ* ) |
| 59 | xneg11 | ⊢ ( ( ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ∈ ℝ* ) → ( -𝑒 ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) = -𝑒 ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ↔ ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) = ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ) ) | |
| 60 | 56 58 59 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → ( -𝑒 ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) = -𝑒 ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ↔ ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) = ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ) ) |
| 61 | 54 60 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 0 ) → ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) = ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ) |
| 62 | 0re | ⊢ 0 ∈ ℝ | |
| 63 | lttri4 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ∨ 𝐴 < 0 ) ) | |
| 64 | 62 24 63 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ∨ 𝐴 < 0 ) ) |
| 65 | 1 23 61 64 | mpjao3dan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e ( 𝐵 +𝑒 𝐶 ) ) = ( ( 𝐴 ·e 𝐵 ) +𝑒 ( 𝐴 ·e 𝐶 ) ) ) |